SUSTAINABLE DEVELOPMENT

Departmental Office: The Earth Institute, Office of Academic and Research Programs, Hogan, B-Level; http://sdev.ei.columbia.edu

Co-Directors of Undergraduate Studies:
Ruth DeFries, 212-851-1647; rd2402@columbia.edu
Jason Smerdon, 845-365-8493; jsmerdon@ldeo.columbia.edu

Program Administrators:
Natalie Unwin-Kuruneri, 212-854-8536; natalie@ei.columbia.edu
Cari Shimkus, 212-851-9350; cshimkus@ei.columbia.edu

Sustainable development is founded on the premise that human well-being should advance without irreparable harm to ecosystems and the vital services they provide, without depleting essential resources, and without posing risks to future generations. The term “sustainable” refers to managing the world’s economy in a manner consistent with the continued healthy functioning of Earth’s ecosystems, oceans, atmosphere and climate. In this context, “development” refers to continued social, political, and economic progress aimed at improving the well-being of the global community, especially for the poorest people.

Academic Programs

The Earth Institute—in collaboration with Columbia College, the School of General Studies, the School of International and Public Affairs, and the Departments of Earth and Environmental Science; Ecology, Evolution, and Environmental Biology; and Earth and Environmental Engineering—offers a major and a special concentration in sustainable development.

These programs are designed to: engage students in this emergent interdisciplinary discussion, provide knowledge of the theory and practice of sustainable development, stimulate a critical examination of historical and conceptual antecedents, provide experience in the complex challenges of sustainable development through direct engagement, and help them imagine alternative futures for our rapidly changing world. With help from the Earth Institute faculty, courses are specifically created to address the very real and complex issues of development as they relate to the interactions of the natural and social systems.

The major focuses heavily on the sciences and provides students with a working knowledge of issues on a range of interacting subject areas. After declaring the major, students are assigned an academic adviser from within the Earth Institute, who advises on class selection and career development. Students benefit from a support system of faculty, advisers, and program managers, and have access to the multitude of resources for internships, study abroad programs, and career development.

The special concentration is intentionally more flexible, but its structure allows students to benefit from the cross-disciplinary courses and to build the expertise to allow them to address the fundamental issue of how to move towards a trajectory of sustainability.

The sustainable development program is structured to ensure that students graduate with the skills and knowledge to enable them to advance professionally in the public, private, governmental, and nonprofit sectors, and to pursue advanced degrees. Those interested in sustainable development are encouraged to participate in lectures, conferences, and other programs sponsored by the Earth Institute.

Grading

A letter grade of C- or better is needed in all program-related courses in order to satisfy the program requirements.

Sustainable Development Faculty

Susana Adamo (Center for International Earth Information Network)
Satyajit Bose (School of International and Public Affairs)
Steve Cohen (The Earth Institute; School of International and Public Affairs)
Lisa Dale (The Earth Institute; Ecology, Evolution, and Environmental Biology)
Ruth DeFries (Ecology, Evolution, and Environmental Biology) (Co-Director)
Paul Gallay (Ecology, Evolution and Environmental Biology)
Michael Gerrard (Center for Climate Change Law and Columbia Law School)
Adela Gondek (Ecology, Evolution and Environmental Biology)
Radley Horton (Center for Climate and Environmental Biology)
Joyce Klein-Rosenthal (The Earth Institute)
Jacqueline Klopp (The Earth Institute)
Upmanu Lall (Columbia Water Center; International Research Institute for Climate and Society)
Kytt McManus (Center for International Earth Science Information Network)
Dara Mendeloff (Center for International Earth Science Information Network)
Rachel Moresky (Population and Family Health)
John Mutter (Earth and Environmental Sciences; School of International and Public Affairs)
Linda Pistolesi (Center for International Earth Science Information Network)
Robert Pollack (Biological Sciences)
Elliott Sclar (The Earth Institute; Architecture, Planning, and Preservation; School of International and Public Affairs)
Jason Smerdon (Lamont-Doherty Earth Observatory) (Co-Director)
Marni Sommer (Mailman School of Public Health)
Martin Stute (Lamont-Doherty Earth Observatory)
Phil Weinberg (Ecology, Evolution and Environmental Biology)

Major in Sustainable Development

The sustainable development foundation courses should be taken first and students should then work with the program adviser on further course selection and sequencing.
The major in sustainable development requires a minimum of 15 courses and a practicum as follows:

Sustainable Development Foundation

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDEV UN1900</td>
<td>Introduction to Sustainable Development Seminar</td>
</tr>
<tr>
<td>SDEV UN2300</td>
<td>Challenges of Sustainable Development</td>
</tr>
<tr>
<td>EESC UN2330</td>
<td>SCIENCE FOR SUSTAINABLE DEVPT</td>
</tr>
</tbody>
</table>

Basic Disciplinary Foundation

Select one of the following science sequences.

EESC UN2330
- Earth Resources and Sustainable Development
- and Earth’s Environmental Systems: The Climate System

SDEV UN1900
- General Chemistry I (Lecture) and General Chemistry II (Lecture)

EESC UN2001
- Environmental Biology I: Elements to Organisms and Environmental Biology II: Organisms to the Biosphere (EESC UN2310 is a co-requisite with EEEB UN2002)

EEEB UN2001
- Environmental Biology I: Elements to Organisms and Environmental Biology II: Organisms to the Biosphere (EESC UN2310 is a co-requisite with EEEB UN2002)

EESC UN2002
- Environmental Biology II: Organisms to the Biosphere (EESC UN2310 is a co-requisite with EEEB UN2002)

EESC UN1600
- Earth Resources and Sustainable Development and Earth’s Environmental Systems: The Climate System

EESC UN1600
- Earth Resources and Sustainable Development and Earth’s Environmental Systems: The Solid Earth System

EESC UN1600
- Earth Resources and Sustainable Development and Earth’s Environmental Systems: The Life System (EESC UN2310 is a co-requisite with EESC UN2300)

EESC UN2100
- Earth’s Environmental Systems: The Climate System and Earth’s Environmental Systems: The Solid Earth System

EESC UN2100
- Earth’s Environmental Systems: The Climate System and Earth’s Environmental Systems: The Solid Earth System

EESC UN2200
- Earth’s Environmental Systems: The Solid Earth System and Earth’s Environmental Systems: The Life System (EESC UN2310 is a co-requisite with EESC UN2300)

PHYS UN1201
- General Physics I and General Physics II (LABS PHYS 1291 and PHYS 1292 also required)

Select two of the following social science courses:

ANTH UN1002
- The Interpretation of Culture

ANTH UN2004
- Introduction to Social and Cultural Theory

ECON UN1105
- Principles of Economics

ECON UN1501
- Introduction to Comparative Politics

ECON UN1601
- INTERNATIONAL POLITICS

SDEV UN2000
- Introduction to Environmental Law

SDEV UN2050
- Environmental Policy and Governance

SDEV UN3400
- Human Populations and Sustainable Development

SOCI UN1000
- The Social World

Select one of the following quantitative foundations courses:

EEEB UN3005
- Introduction to Statistics for Ecology and Evolutionary Biology

Analysis and Solutions to Complex Problems

Select two of the following courses:

CIEE E3260
- Engineering for developing communities

EAAE W4304
- Closing the carbon cycle

ECIA W4100
- Management and development of water systems

EESC BC3032
- Agricultural and Urban Land Use: Human-Environment Interactions

EESC BC3045
- Responding to Climate Change

EESC GU4600
- Earth Resources and Sustainable Development

PLAN A4579
- Introduction to Environmental Planning

PUBH UN3100
- Fundamentals of Global Health

SDEV UN3330
- Ecological and Social Systems for Sustainable Development

SDEV UN3355
- Climate Change and Law

SDEV UN3360
- Disasters and Development

SDEV UN3366
- Energy Law

SDEV UN3410
- Urbanization and Sustainable Development

SOCI BC3932
- Climate Change, Global Migration, and Human Rights in the Anthropocene

URBS UN3565
- Cities in Developing Countries: Problems and Prospects

SDEV GU4250
- CLIMATE CHANGE:RESILIENCE# ADAPTATION

The Summer Ecosystems Experience for Undergraduates (SEE-U)

Skills/Actions

Select two of the following courses:

EAEE E4257
- Environmental data analysis and modeling

EESC GU4050
- Global Assessment and Monitoring Using Remote Sensing

EESC BC3050
- Big Data with Python: Python for Environmental Analysis and Visualisation

EESC UN2350
- Economic and Financial Methods for Sustainable Development

EESC UN3390
- GIS for Sustainable Development

SDEV UN3450
- Spatial Analysis and Modeling for Sustainable Development

SDEV GU4015
- Complexity Science

SOCI UN3010
- Methods for Social Research

SUMA PS4100
- Sustainability Management

SDEV GU4101
- Qualitative Research Methods for Sustainable Development

SDEV GU4240
- Science Communication

Practicum

The Summer Ecosystems Experience for Undergraduates (SEE-U)∗
INAF U4420 Oil, Rights and Development
SDEV UN3998 Sustainable Development Independent Study
SUMA PS4310 Practicum in Innovation Sustainability Leadership
SUMA PS4734 Earth Institute Practicum

Electives
Select two courses from the following areas. Courses can be combined across Areas 2-5 only. If you select Area 1, you must complete two thesis courses and these will fulfill the elective requirement:
Area 1: Senior Thesis Sequence (EESC BC3800/EESC BC3801 and EESC UN3901) **
Area 2: Upper level courses from the approved electives list (see link in footnotes to access list) ***
Area 3: Additional courses listed under Analysis and Solutions to Complex Problem
Area 4: Additional courses listed under Skills/Actions
Area 5
SDEV UN3310 Ethics of Sustainable Development
SDEV GU4350 Public Lands in the American West

Capstone Workshop
SDEV UN3280 Workshop in Sustainable Development
SDEV UN3550 BANGLADSH:LIFE-TECT ACTV DELTA

** The Summer Ecosystem Experiences for Undergraduates (SEE-U): Please note that students in the major or the special concentration who take SEE-U as a 6-point course can use 3 points towards the Complex Problems requirement and 3 points towards the Skills/Action requirement. If SEE-U is taken for 3 points, it can only count as one Complex Problems class.
*** If choosing the senior thesis option to fulfill the elective requirements, students must take both courses in the senior thesis sequence.

For a full list of previously approved electives, please visit the sustainable development program website: http://sdev.ei.columbia.edu/curriculum/major/.

Special Concentration in Sustainable Development

In addition to the requirements of the special concentration, students must complete a major.

The sustainable development foundation courses should be taken first and students should then work with the program adviser on further course selection and sequencing.

The special concentration in sustainable development requires a minimum of 9 courses and a practicum as follows:

Sustainable Development Foundation
SDEV UN1900 Introduction to Sustainable Development Seminar
SDEV UN2300 Challenges of Sustainable Development

EESC UN2330 SCIENCE FOR SUSTAINABLE DEVPT

Natural Science Systems
Select one of the following courses. NOTE—Associated Labs are also required:
CHEM UN1403 General Chemistry I (Lecture)
EEEB UN1001 Biodiversity
EEEB UN2002 Environmental Biology II: Organisms to the Biosphere (EESC UN2310 is co-requisite with EEEB UN2002)
EESC UN1003 Climate and Society: Case Studies
EESC UN1011 Earth: Origin, Evolution, Processes, Future
EESC UN1201 Environmental Risks and Disasters
EESC UN1600 Earth Resources and Sustainable Development
EESC UN2100 Earth’s Environmental Systems: The Climate System
EESC UN2200 Earth’s Environmental Systems: The Solid Earth System
EESC UN2300 Earth’s Environmental Systems: The Life System (EESC UN2310 is co-requisite with EESC UN2300)
PHYS UN1201 - PHYS UN1291 General Physics I and General Physics Laboratory

Human Science Systems
Select one of the following courses:
ANTH UN1002 The Interpretation of Culture
ANTH UN2004 Introduction to Social and Cultural Theory
ECON UN1105 Principles of Economics
POLS UN1501 Introduction to Comparative Politics
POLS UN1601 INTERNATIONAL POLITICS
SDEV UN2000 Introduction to Environmental Law
SDEV UN2050 Environmental Policy and Governance
SDEV UN3400 Human Populations and Sustainable Development
SOCI UN1000 The Social World

Analysis and Solutions to Complex Problems
Select two of the following courses:
CIEE E3260 Engineering for developing communities
EAAE W4304 Closing the carbon cycle
ECIA W4100 Management and development of water systems
EESC BC3032 Agricultural and Urban Land Use: Human-Environment Interactions
EESC BC3045 Responding to Climate Change
EESC GU4600 Earth Resources and Sustainable Development
PLAN A4579 Introduction to Environmental Planning
PUBH UN3100 Fundamentals of Global Health
SDEV UN3330 Ecological and Social Systems for Sustainable Development
SDEV UN3355 Climate Change and Law
SDEV UN3360 Disasters and Development
SDEV UN3366 Energy Law
SDEV UN3410 Urbanization and Sustainable Development
SOCI BC3932 Climate Change, Global Migration, and Human Rights in the Anthropocene
URBS UN3565 Cities in Developing Countries: Problems and Prospects

The Summer Ecosystem Experiences for Undergraduates (SEE-U) *

Skills/Actions

Select one of the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAEE E4257</td>
<td>Environmental data analysis and modeling</td>
</tr>
<tr>
<td>EESC BC3050</td>
<td>Big Data with Python: Python for Environmental Analysis and Visualisation</td>
</tr>
<tr>
<td>EESC GU4050</td>
<td>Global Assessment and Monitoring Using Remote Sensing</td>
</tr>
<tr>
<td>SCNC W3010</td>
<td>Science, technology and society</td>
</tr>
<tr>
<td>SDEV UN2320</td>
<td>Economic and Financial Methods for Sustainable Development</td>
</tr>
<tr>
<td>SDEV UN3390</td>
<td>GIS for Sustainable Development</td>
</tr>
<tr>
<td>SDEV UN3450</td>
<td>Spatial Analysis and Modeling for Sustainable Development</td>
</tr>
<tr>
<td>SDEV GU4015</td>
<td>Complexity Science</td>
</tr>
<tr>
<td>SDEV GU4101</td>
<td>Qualitative Research Methods for Sustainable Development</td>
</tr>
<tr>
<td>SDEV GU4240</td>
<td>Science Communication</td>
</tr>
<tr>
<td>SUMA PS4100</td>
<td>Sustainability Management</td>
</tr>
<tr>
<td>SOCI UN3010</td>
<td>Methods for Social Research</td>
</tr>
</tbody>
</table>

* The Summer Ecosystem Experiences for Undergraduates (SEE-U): Please note that students in the major or the special concentration who take SEE-U as a 6-point course can use 3 points towards the Complex Problems requirement and 3 points towards the Skills/Action requirement. If SEE-U is taken for 3 points, it can only count as one Complex Problems class.

Note: Sustainable Development Website for Special Concentrators: http://sdev.ei.columbia.edu/curriculum/special-concentration/

SDEV UN1900 Introduction to Sustainable Development Seminar. 1 Point. Open to prospective sustainable development majors and concentrators only.

The course is designed to be a free flowing discussion of the principals of sustainable development and the scope of this emerging discipline. This course will also serve to introduce the students to the requirements of the undergraduate program in sustainable development and the content of the required courses in both the special concentration and the major. The focus will be on the breadth of subject matter, the multidisciplinary nature of the scholarship and familiarity with the other key courses in the program. Offered in the Fall and Spring.

<table>
<thead>
<tr>
<th>Term</th>
<th>Section</th>
<th>Call Number</th>
<th>Instructor</th>
<th>Times/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring 2020</td>
<td>001</td>
<td>12343</td>
<td>Jason Smerdon</td>
<td>T 11:40am - 12:55pm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>503 Hamilton Hall</td>
</tr>
<tr>
<td>Fall 2020</td>
<td>001</td>
<td>11168</td>
<td>Jason Smerdon</td>
<td>T 11:40am - 12:55pm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Room TBA</td>
</tr>
</tbody>
</table>

SDEV UN2000 Introduction to Environmental Law. 3 Points.

The course provides an overview of environmental law for students without a legal background. It examines U.S. statutes and regulations regarding air, water, hazardous and toxic materials, land use, climate change, endangered species, and the like, as well as international environmental issues. After completing the course students should be equipped to understand how the environmental laws operate, the role of the courts, international treaties and government agencies in implementing environmental protection, and techniques used in addressing these issues.

<table>
<thead>
<tr>
<th>Term</th>
<th>Section</th>
<th>Call Number</th>
<th>Instructor</th>
<th>Times/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring 2020</td>
<td>001</td>
<td>12492</td>
<td>Philip Weinberg</td>
<td>M W 10:10am - 11:25am</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>627 Seeley W. Mudd Building</td>
</tr>
<tr>
<td>Fall 2020</td>
<td>001</td>
<td>11170</td>
<td>Lisa Dale</td>
<td>M W 11:40am - 12:55pm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Room TBA</td>
</tr>
</tbody>
</table>

SDEV UN2050 Environmental Policy and Governance. 3 Points.

Sustainability is a powerful framework for thinking about business, economics, politics and environmental impacts. An overview course, Environmental Policy & Governance will focus specifically on the policy elements of sustainability. With an emphasis on the American political system, the course will begin by exploring the way the American bureaucracy addresses environmental challenges. We will then use the foundations established through our understanding of the US system to study sustainable governance at the international level. With both US and international perspectives in place, we will then address a range of specific sustainability issues including land use, climate change, food and agriculture, air quality, water quality, and energy. Over the course of the semester, we will study current events through the lens of sustainability policy to help illustrate course concepts and theories.

<table>
<thead>
<tr>
<th>Term</th>
<th>Section</th>
<th>Call Number</th>
<th>Instructor</th>
<th>Times/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall 2020</td>
<td>001</td>
<td>11170</td>
<td>Lisa Dale</td>
<td>M W 11:40am - 12:55pm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Room TBA</td>
</tr>
</tbody>
</table>
SDEV UN2300 Challenges of Sustainable Development. 3 Points.
This course provides an introduction to the field of sustainable development, drawing primarily from social science and policy studies. It offers a critical examination of the concept of sustainable development, showing how factors like economics, population, culture, politics and inequality complicate its goals. Students will learn how different social science disciplines (political science, demography, economics, geography, history, law, and sociology) approach challenges of sustainable development across a variety of topics (fisheries, climate change, air pollution, consumption, energy, conservation, and water management). The course provides students with some of the fundamental concepts, vocabulary, and analytical tools to pursue and think critically about sustainable development. Offered in the Spring.

SDEV UN2320 Economic and Financial Methods for Sustainable Development. 3 Points.
Prerequisites: Principles of Economics and one semester of calculus. The objective of this course is to introduce students to the skills and methods necessary to understand and evaluate the economic and financial aspects of sustainable development. Throughout the course, students will compare competing objectives and policies through the prism of economic & financial reasoning. Environmental economics and finance are broad areas covering all the multi-faceted and complex interactions between the economic system and the natural environment. Financial markets are the primary source of signals used to direct economic activity in a capitalist global economy. Economic activity is the primary determinant of the quality and sustainability of the natural environment. Students interested in sustainable development who are unfamiliar with economics and who do not develop a facility with economic and financial concepts are severely handicapped in their efforts to increase the level of environmental responsibility embedded in economic activity. This course is intended to provide students with a flying introduction to key analytical concepts required to understand topics in environmental economics and finance and to introduce them to selected topics within the field. The first part of the course (the Analytical Toolbox) is designed to provide a set of portable skills for two sets of students: a) those who will work in fields specifically devoted to sustainable development who, as part of their work, will need to engage with sources of economic & financial information and with discourses where sustainable development is not a focus; and b) students who may end up following careers in organizations where sustainability is not the primary objective. The topics and readings in the second part of the course were chosen to facilitate a critical engagement with the broad intellectual framework underlying sustainable development from the perspective of economics and finance. The topics are intended to create a community of intellectual discourse on sustainable development that will spill over beyond the classroom to the conversations of students and alumni that will far outlive graduation. Offered in the Fall.

SDEV UN3280 Workshop in Sustainable Development. 4 Points.
Open to sustainable development seniors only.
The upper level undergraduate Sustainable Development Workshop will be modeled on client based graduate-level workshops, but with more time devoted to methods of applied policy analysis and issues in Sustainable Development. The heart of the course is the group project on an issue of sustainable development with a faculty advisor providing guidance and ultimately grading student performance. Students would receive instruction on methodology, group work, communication and the context of policy analysis. Much of the reading in the course would be project-specific and identified by the student research teams. Offered in Fall and Spring. For registration issues contact Cari Shimkus (cshimkus@ei.columbia.edu).
Aiming to improve human conditions within many diverse environments, sustainable development seeks to create, increase and perpetuate benefit and to cease, rectify and reverse harm. Sustainable development is consequently inextricable from the fabric of ethics, woven with determinations of benefit and harm to the existence and well-being of both humans and nonhumans. Underlying such determinations are those of self- and other-regarding motivation and behavior; and underlying these are still others, of sensitivity and rationality in decision-making, whether individual, social or public. Sustainable development is interlaced with and contingent upon all these determinations, at once prescriptive and judgmental, which can be called the ethics of sustainable development. This course is divided into four main sections, of which two are intended to show the ethical fallacies of unsustainable development, and two, the ethical pathways of sustainable development. The first section focuses upon ethically problematic basic assumptions, including human (species) hegemony, happy (hedonic) materialism, and selective (data) denial. The second focuses upon ethically problematic ensuing rationalizations, including those pertaining to damages, victims, consequences and situations of climatic, chemical, biological and ecological harm. The third section responds to these rationalizations with ethically vital considerations of earth justice, environmental justice, culturally-based ethics, and sector-based ethics (water, food, place and climate ethics). Finally, the fourth section responds to the initial, long-standing problematic assumptions with a newly emergent ethical paradigm, comprising biotic wholeness, environmental integrity and the deliberative zero-goal. Tying all sections together is the central theme: to be sustainable, development must be ethical. Reflecting the collaborative quality of the field of sustainable development, the course extends to readings whose authors have all pursued their work at intersections of science and ethics, environment and ethics, policy and ethics, business and ethics, and sustainable development and ethics.

The purpose of this course is to provide students with a broad introduction to the field of climate law in the United States and at the international level. The course begins with an overview of the causes and effects of global climate change and the methods available to control and adapt to it. We then examine the negotiation, implementation and current status of the United Nations Framework Convention on Climate Change, the Kyoto Protocol, and the Copenhagen Accord. The focus then turns to the past and proposed actions of the U.S. Congress, the executive branch and the courts, as well as regional, state and municipal efforts. The Clean Air Act, the National Environmental Policy Act and the Endangered Species Act will receive special attention. We evaluate the various legal tools that are available to address climate change, including cap-and-trade schemes; carbon taxation; command-and-control regulation; litigation; securities disclosures; and voluntary action. The roles of energy efficiency, renewable energy sources, carbon capture and sequestration, and forestry and agriculture each receive close attention. Implications for international human rights, international trade, environmental justice, and international and intergenerational equity are discussed. The course concludes with examination of the special challenges posed by China; proposals for adaptation and geoengineering; and business opportunities and the role of lawyers. Offered in the Spring.

Prerequisites: SDEV UN2300 Challenges of Sustainable Development and EESC UN2330 Science for Sustainable Development.

The course focuses on basic principles in understanding ecological and social relationships and then focuses on three current topics central to Sustainable Development for in-depth study. Examples of topics to be covered are: conservation of biodiversity, payments for ecosystem services, and the ecology of food production. The emphasis will be on the multiple perspectives— environmental, social and economic— required to understand and develop solutions to problems in sustainable development. These topics will undoubtedly vary from year to year, as the course keeps pace with current topics.
SDEV UN3360 Disasters and Development. 3 Points.
Prerequisites: EESC 2330, SDEV W2300.
Human welfare status is very unevenly distributed throughout the globe – some of us live very comfortable lives, others remain in desperate poverty showing little progress away from their condition. Between are countries that are rapidly developing and converging toward the welfare of the richest. At all levels of economic development human activities place significant pressure on the environment and threatens all of Earth’s vital functions and support systems for human life. This challenge requires timely responses based on solid understanding of the human/ environment interface, technological and economic approaches to mitigate adverse effects on the environment, and routes to understanding the complex dynamics of the coupled human/natural systems that can chart a pathway to improvement in the lives of the poorest and continued well-being for those who have achieved prosperity without forcing natural systems into decline or massive fluctuation. This course offers undergraduate students, for the first time, a comprehensive course on the link between natural disaster events and human development at all levels of welfare. It explores the role that natural disasters might have and have had in modulating development prospects. Any student seriously interested in sustainable development, especially in light of climate change, must study the nature of extreme events - their causes, global distribution and likelihood of future change. This course will cover not only the nature of extreme events, including earthquakes, hurricanes, floods and droughts but also their transformation into disaster through social processes. It will ultimately help students to understand the link between such extreme events, the economic/social shock they represent and development outcomes. The course will combine careful analysis of the natural and social systems dynamics that give rise to disasters and examine through group learning case studies from the many disasters that have occurred in the first decade of the 21st century. Offered in the Spring (odd years only).

SDEV UN3366 Energy Law. 3 Points.
This course concerns the regulation of energy, energy resources, and energy facilities. Among the topics will be the regulation of rates and services; the roles of the Federal Energy Regulatory Commission and the state public utility commissions; and the interaction with environmental law. Attention will be devoted to energy resources (such as oil, natural gas and coal) and to generating, transmission and distribution facilities. The current and future roles of renewable energy, energy efficiency, and nuclear energy will receive special attention, as will the regulation and deregulation of electricity.

SDEV UN3390 GIS for Sustainable Development. 3 Points.
Priority given to sustainable development senior and juniors.
This course is designed to provide students with a comprehensive overview of theoretical concepts underlying GIS systems and to give students a strong set of practical skills to use GIS for sustainable development research. Geographic Information Systems (GIS) are a system of computer software, data and analysis methods used to create, store, manage, digital information that allow us to create maps and dynamic models to analyze the physical and social processes of the world. Through a mixture of lectures, readings, focused discussions, and hands-on exercises, students will acquire an understanding of the variety and structure of spatial data and databases, gain knowledge of the principles behind raster and vector based spatial analysis, and learn basic cartographic principles for producing maps that effectively communicate a message. Student will also learn to use newly emerging web based mapping tools such as Google Earth, Google Maps and similar tools to develop on-line interactive maps and graphics. The use of other geospatial technologies such as the Global Positioning System will also be explored in this class. Case studies examined in class will draw examples from a wide ranges of GIS applications developed to assist in the development, implementation and evaluation of sustainable development projects and programs. On completion of the course, students will: 1. use a variety of GIS software programs to create maps and reports; 2. develop a sound knowledge of methods to search, obtain, and evaluate a wide variety of spatial data resources; 3. develop skills needed to determine best practices for managing spatial data resources; 4. use GIS to analyze the economic, social and environmental processes underlying the concept of building a sustainable world; 5. Gain an understanding of the limits of these technologies and make assessments of uncertainty associated with spatial data and spatial analysis models. Offered in the fall and spring.

<table>
<thead>
<tr>
<th>Term</th>
<th>Section</th>
<th>Call Number</th>
<th>Instructor</th>
<th>Times/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring 2020</td>
<td>001</td>
<td>12502</td>
<td>Linda Pistolesi, Kytt MacManus</td>
<td>M 1:10pm - 2:25pm 252 Engineering Terrace</td>
</tr>
<tr>
<td>Fall 2020</td>
<td>001</td>
<td>11185</td>
<td>Kytt MacManus</td>
<td>M 1:10pm - 2:25pm Room TBA</td>
</tr>
<tr>
<td>Fall 2020</td>
<td>001</td>
<td>11185</td>
<td>Kytt MacManus</td>
<td>W 1:10pm - 2:25pm Room TBA</td>
</tr>
</tbody>
</table>
SDEV UN3400 Human Populations and Sustainable Development. 3 Points.
Population processes and their outcomes in terms of population size and
distribution have a fundamental role in sustainable development and
also broad policy implications. This course will introduce students
to the scientific study of human populations as a contribution toward
understanding social structure, relations, and dynamics, as well as
society-nature interactions. The aim is to offer a basic introduction to the
main theories, concepts, measures, and uses of demography. The course
will cover the issues of population size, distribution and composition,
and consumption, at different scales from global to regional to local, as well
as the implications for population-environment relationships. It will also
address the fundamental demographic processes of mortality, fertility
and migration, including their trends and transitions. We will consider
these topics in the context of economic development, sustainability
and cultural change. The course will also include an overview of basic
demographic techniques and tools used for identifying, managing,
analyzing and interpreting population data, and an introduction to
population projections. Lab sessions will supplement readings and
lectures by enabling students to explore data sources, calculate rates,
and graphically represent demographic data. Offered in the Fall (even
years).

<table>
<thead>
<tr>
<th>Term</th>
<th>Section</th>
<th>Call Number</th>
<th>Instructor</th>
<th>Times/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall 2020</td>
<td>001</td>
<td>11189</td>
<td>Susana Adamo</td>
<td>T Th 10:10am - 11:25am</td>
</tr>
</tbody>
</table>

SDEV UN3410 Urbanization and Sustainable Development. 3 Points.
The first decade of the 21st century marked the first time in human
history when more of world’s population lived in urban as distinct from
rural places. It is impossible to achieve sustainable development in a
physical, social or economic manner absent an understanding of the
powerful and interdependent relationship between these concepts of
sustainability and urbanization. This course explores this vital nexus.
Students will gain a more detailed understanding of the ways in which
urban life provides opportunities and challenges for addressing climate
change, access to water and energy efficiency, among other topics. The
intention is to provide students majoring in Sustainable Development
with an historic and contemporary understanding of the connections
between the process of urbanization that now dominates the world and
the range of ways in which that process, directly and indirectly, shapes
the challenge of sustainable development. Offered in the Fall (even
years).

<table>
<thead>
<tr>
<th>Term</th>
<th>Section</th>
<th>Call Number</th>
<th>Instructor</th>
<th>Times/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring 2020</td>
<td>001</td>
<td>12503</td>
<td>Elliott Solar, Siobhan Watson</td>
<td>W 6:10pm - 8:00pm</td>
</tr>
</tbody>
</table>

SDEV UN3450 Spatial Analysis and Modeling for Sustainable
Development. 3 Points.
Priority given to sustainable development senior and juniors.
This is an intermediate course in spatial modeling developed specifically
for students in the undergraduate Sustainable Development program.
This course will provide a foundation for understanding a variety of
issues related to spatial analysis and modeling. Students will explore
the concepts, tools, and techniques of GIS modeling and review and
critique modeling applications used for environmental planning and
policy development. The course will also offer students the opportunity
to design, build and evaluate their own spatial analysis models. The
course will cover both vector and raster based methods of analysis with
a strong focus on raster-based modeling. Participants will also learn
how to develop and publish online maps, spatial applications, metadata,
and mobile Apps in a geodatabase environment to support fieldwork
research and geospatial data gathering and analysis. Course registration
includes online mapping user license and credits to store, analyze, and
serve geospatial data and apps. We will draw examples from a wide range
of applications in such areas as modeling Land Use and Land Cover for
biodiversity and conservation, hydrological modeling, and site suitability
modeling. The course will consist of lectures, reading assignments, lab
assignments, and a final project. **Students must register for required lab:**

SDEV W3452.

SDEV UN3550 BANGLADESH: LIFE-TECT ACTV DELTA. 4 Points.
Open to sustainable development seniors only.
This course will explore the interaction of riverine processes, water
and hydrology, sedimentary processes, tectonics, land subsidence and
sea level rise, environmental issues, cultural setting, and sustainable
development in the world’s largest delta. The course will explore both
the hazards and resources for life in this dynamic environment through
lectures, a field trip to Bangladesh during Spring Break and guest
lecturers in earth and social sciences. During the field trip, we will be
joined by Dhaka University professors and students, providing experience
in cross-cultural collaboration, as well as translators to interviews and
discussions with Bangladeshis.
,By the end of the course, students will develop a quantitative
understanding of the multiple earth sciences issues. It will also provide a
perspective on the mixture of competing earth science, social, historical
and political issues that must be addressed in order to effectively
address environmental issues. Students should acquire an ability to
assess competing claims and projections for future environmental
change.

<table>
<thead>
<tr>
<th>Term</th>
<th>Section</th>
<th>Call Number</th>
<th>Instructor</th>
<th>Times/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring 2020</td>
<td>001</td>
<td>18266</td>
<td>Michael Steckler</td>
<td>T Th 12:10pm - 2:00pm</td>
</tr>
</tbody>
</table>

SDEV UN3998 Sustainable Development Independent Study. 1-3 Points.
Sustainable development majors and special concentrators must register
for this independent study to use internship hours for the practicum
credit. Students must consult with their program adviser and department
before registering. Offered fall, spring and summer.

<table>
<thead>
<tr>
<th>Term</th>
<th>Section</th>
<th>Call Number</th>
<th>Instructor</th>
<th>Times/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring 2020</td>
<td>001</td>
<td>12504</td>
<td>Ruth DeFries, Cari Shimkus, Lisa Dale</td>
<td></td>
</tr>
<tr>
<td>Fall 2020</td>
<td>001</td>
<td>11191</td>
<td>Ruth DeFries, Cari Shimkus</td>
<td></td>
</tr>
</tbody>
</table>
SDEV GU4015 Complexity Science. 3 Points.
The Complexity Course is a survey of techniques, applications, and implications of complexity science and complex systems. This course aims to be both an introduction for students from other fields, and a forum for continued discussion within the complexity community. Topics include systems dynamics, chaos, scaling, fattailed distributions, fractals, information theory, emergence, criticality, agent-based models, graph theory, and social networks.

Course Summary:
Water, one of humankind's first power sources, remains critically important to the task of maintaining a sustainable energy supply, in the United States and elsewhere. Conversely, the need to provide safe drinking water and keep America's rivers clean cannot be met without access to reliable energy supplies. As the impact of climate disruption and other resource constraints begins to mount, the water/energy nexus is growing increasingly complex and conflict-prone.

Essential Connections begins by examining the development of America's water and energy policies over the past century and how such policies helped to shape present-day environmental law and regulation. Our focus then turns to the current state of US water and energy resources and policy, covering issues such as oil and gas exploration, nuclear energy, hydroelectric power and renewables. We also examine questions of inclusion and equity in connection with the ways in which communities allocate their water and energy resources and burdens along racial, ethnic and socioeconomic lines. The third and final section of the course addresses the prospects for establishing water and energy policies that can withstand climate disruption, scarcity and, perhaps most importantly, America's seemingly endless appetite for political dysfunction.

By semester's end, students will better understand the state of America's energy and water supply systems and current efforts to cope with depletion, climate change and related threats affecting these critical, highly-interdependent systems. As a final project, students will utilize the knowledge gained during the semester to create specific proposals for preserving and enhancing the sustainability of US water and energy resources.

SDEV GU4101 Qualitative Research Methods for Sustainable Development. 3 Points.
Students of sustainable development are faced with an array of global challenges that warrant scholarly inquiry. Social science questions are particularly well suited for qualitative research. This course will provide an overview of social science research methods, with a focus on building a toolkit for undergraduate students. We begin with an overview of the science of knowing. How do we generate scientific hypotheses in the social sciences, and then how can we find out whether those hypotheses are accurate? An exploration of a range of qualitative research methods will occupy the majority of our class time, including interviewing, case studies, questionnaires, surveys, coding, and participant observation. Toward the end of the course we consider how mixed methods allow for the integration of quantitative tools in the social sciences. Throughout, students will both study and practice these research methods, experimenting to better understand the strengths and challenges associated with each approach. The course will end with poster presentations in which students share their own research and justify the methods they have employed.

SDEV GU4250 CLIMATE CHANGE: RESILIENCE#ADAPTATION. 3.00 Points.
This course will offer a focused study of climate change adaptation policy, exploring dimensions of adaptation across sectors and scales. With a thematic focus on pervasive global inequities, students will also consider challenges associated with international development and disaster risk management. An inter-disciplinary framework will enrich the course, and students will learn about perspectives from the natural sciences, law, architecture, anthropology, humanitarian aid, and public policy. The online version of this course will combine synchronous and asynchronous learning: twice weekly live discussion sessions will be matched with assigned readings, recorded lectures and videos.

<table>
<thead>
<tr>
<th>Term</th>
<th>Section</th>
<th>Call Number</th>
<th>Instructor</th>
<th>Times/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring 2020</td>
<td>001</td>
<td>12506</td>
<td>Lisa Dale</td>
<td>T 10:10am - 12:00pm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>106b Lewisohn Hall</td>
</tr>
</tbody>
</table>
SDEV GU4350 Public Lands in the American West. 3 Points.

Course Description:

Environmental issues in the American West are dramatically different from the rest of the country due in large part to the prevalence of public lands. Most western states have a land base that is at least 35% public, and competing interests vie for limited resources and navigate a complex bureaucracy. This course will focus on the federal agencies authorized to make management decisions across those lands: the U.S. Forest Service, U.S. Bureau of Land Management, U.S. Park Service, and others. We will explore the legal and regulatory framework that guides land use decisions, and study enduring resource access conflicts. Pulling from both academic scholarship and the gray literature in political science, environmental sciences, law, and organizational behavior, this course provides an interdisciplinary overview of governance challenges in the American West.

Organized into four parts, the course will unfold as follows. Part I reviews the theory and origins of our public lands system. We will explore political and ecological history, as well as contributions from psychology and anthropology that help flesh out the layered values associated with the collective choice to remove so much land from the private estate. Part II brings us to the nuts and bolts of the system, and we will learn about the agencies responsible for managing public lands with a focus on the National Park Service, the U.S. Forest Service, and the Bureau of Land Management. Laws and regulations that guide these agencies will also be covered in this section of the course. Part III will focus on stakeholders, including environmental groups, industry groups, local communities, and, indeed, American taxpayers. With so many competing interests, these groups have been active participants in management, and we will consider the various tactics these groups use to advance their goals. Part IV brings everything together in a more detailed study of key controversies on public lands, including energy development, recreation access, Wilderness designation, wildfire management, and endangered species management.

Of Related Interest

Analysis of Climate and Earth Systems

EESC BC3017 Environmental Data Analysis
EESC GU4008 Introduction to Atmospheric Science
EESC GU4917 Earth/Human Interactions
EESC GR6901 Research Computing for the Earth Sciences

Disasters and Health

ANTH V3924 Anthropology and Disaster
ANTH V3971 Culture and Environmental Behavior
INAF U6760 Managing Risk in Natural and Other Disasters

Economics

ECON UN2257 Global Economy
ECON BC3029 Empirical Development Economics
ECON UN3211 Intermediate Microeconomics
ECON UN3213 Intermediate Macroeconomics
ECON GU4301 Economic Growth and Development
ECON GU4370 Political Economy

Energy and Engineering

ANTH V3872 From Physics Labs to Oil Futures: Social Studies of Energy
INAF U6242 Energy Policy
INAF U8778 Distributed Energy Economics, Technology, and Policy
ECEE E3103 Energy, minerals and materials systems
ECEE E4252 Foundations of Environmental Engineering
ECEE E4001 Industrial ecology of earth resources
ECEE E3900 Undergraduate research in Earth and environmental engineering

Food, Health and Ecology

ECEE UN3087 Conservation Biology
ECEE W4122 Fundamentals of Ecology and Evolution
ECEE GU4260 Food, Ecology, and Globalization
HSWB W3950 Social History of American Public Health
PUBH GU4200 Environment, Health, and Justice: Concepts and Practice
SOCI V2230 Food and the Social Order
SUMA PS4235 The Science of Urban Ecology
SUMA PS 5030 Hungry City Workshop

Law, Policy and Human Rights

ECEE GU4321 Human Nature: DNA, Race & Identity
ECEE GU4700 Race: The Tangled History of a Biological Concept
ENVP U6236 Origins of Environmental Law: Regulation & Evolution
HIST W4400 Americans and the Natural World, 1800 to the Present
HRTS UN3001 Introduction to Human Rights
HRTS BC3850 Human Rights and Public Health
POLC BC3805 *Colloquium on International Organization
INAF U4545 Contemporary Diplomacy
INAF U6243 International Environmental Policy
JWST G4610 Environment and Sustainability in Israel à “Between the Local and the Regional
SCNC W3010 Science, technology and society
SDEV UN3310 Ethics of Sustainable Development
SDEV GU4350 Public Lands in the American West
SOCI UN3020 Social Statistics
SOCI UN3235 Social Movements
SOCI UN3324 Global Urbanism
SOCI UN3960 Law, Science, and Society
POLC V3212 Environmental Politics
REGN U6639 Gender and Development in Southeast Asia
POLC UN3604 War, Peace, and International Interventions in Africa
POLC UN3690 International Law
CITG TH3402 Topics in Global Thought: Global 20-

Urban Studies/Urbanization

Urban Studies/Urbanization
<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>URBS V3200</td>
<td>Spatial Analysis: GIS Methods and Urban Case Studies</td>
</tr>
<tr>
<td>URBS UN3565</td>
<td>Cities in Developing Countries: Problems and Prospects</td>
</tr>
<tr>
<td>PLAN A4579</td>
<td>Introduction to Environmental Planning</td>
</tr>
<tr>
<td>SUMA PS4130</td>
<td>Sustainable Cities</td>
</tr>
<tr>
<td>SUMA PS4330</td>
<td>Disaster Risk Management and Sustainable Urban Resilience</td>
</tr>
<tr>
<td>SUMA PS4490</td>
<td>Women in Cities: Integrating Needs, Rights, Access and Opportunity into Sustainable Urban Design, Planning and Management</td>
</tr>
</tbody>
</table>

Waste Management and Pollution

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAEE E4009</td>
<td>Geographic information systems (GIS) for resource, environmental and infrastructure management</td>
</tr>
<tr>
<td>EAEE E4150</td>
<td>Air pollution prevention and control</td>
</tr>
<tr>
<td>EAEE E4160</td>
<td>Solid and hazardous waste management</td>
</tr>
<tr>
<td>EAEE E4257</td>
<td>Environmental data analysis and modeling</td>
</tr>
<tr>
<td>EESB BC3033</td>
<td>Waste Management</td>
</tr>
<tr>
<td>CIEE E3255</td>
<td>Environmental control and pollution reduction systems</td>
</tr>
</tbody>
</table>

Water

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAEE E4350</td>
<td>Planning and management of urban hydrologic systems</td>
</tr>
<tr>
<td>EEBB W4110</td>
<td>Coastal and Estuarine Ecology</td>
</tr>
<tr>
<td>EEBB GU4195</td>
<td>Marine Conservation Ecology</td>
</tr>
<tr>
<td>ECIA W4100</td>
<td>Management and development of water systems</td>
</tr>
<tr>
<td>CIEE E3250</td>
<td>Hydrosystems engineering</td>
</tr>
<tr>
<td>CIEE E4163</td>
<td>Sustainable Water Treatment and Reuse</td>
</tr>
<tr>
<td>SUMA PS4145</td>
<td>Science of Sustainable Water</td>
</tr>
</tbody>
</table>