ENVIRONMENTAL SCIENCE

Departmental Offices:
556-7 Schermerhorn Hall Extension | 212-854-4525
106 Geoscience, Lamont-Doherty Earth Observatory | 845-365-8550
http://eesc.columbia.edu

Chair of Department:
Prof. Sidney Hemming, sidney@ldeo.columbia.edu

Director of Undergraduate Studies:
Prof. Kerry Key
305C Oceanography, Lamont-Doherty Earth Observatory | 557
Schermerhorn Hall Extension
845-365-8604 | kkey@ldeo.columbia.edu (odland@ldeo.columbia.edu)

Director of Academic Administration and Finance:
Sally Odland
108 Geoscience, Lamont-Doherty Earth Observatory
845-365-8633 | odland@ldeo.columbia.edu

Undergraduate Program Manager:
Anastasia Yankopoulos, 557 Schermerhorn Hall Extension
212-854-3614 | a.t.yankopoulos@columbia.edu (aty2113@columbia.edu)

The undergraduate major in Earth and environmental sciences provides an understanding of the natural functioning of our planet and considers the consequences of human interactions with it. Our program for majors aims to convey an understanding of how the complex Earth system works at a level that encourages students to think creatively about the Earth system processes and how to address multidisciplinary environmental problems. The breadth of material covered provides an excellent background for those planning to enter the professions of law, business, diplomacy, public policy, teaching, journalism, etc. At the same time, the program provides sufficient depth so that our graduates are prepared for graduate school in one of the Earth sciences. The program can be adjusted to accommodate students with particular career goals in mind.

The department's close affiliations with the Lamont-Doherty Earth Observatory, the American Museum of Natural History (AMNH), NASA's Goddard Institute for Space Studies (GISS), the Earth Institute at Columbia (EI), and several departments within the Fu Foundation School of Engineering and Applied Sciences afford opportunities for student participation in a wide variety of current research programs. Summer employment, research, and additional educational opportunities are available at Lamont and GISS. The department encourages majors to become involved in a research project by their junior year.

All majors and concentrators, when planning their programs of study, should regularly consult the directors of undergraduate studies and make themselves aware of the requirements for their particular program.

Programs of Study

Environmental Science Major
The environmental science major curriculum provides an introduction to a variety of fields of study relevant to the environment. Environmental science majors are required to take three semesters of introductory courses and to develop a grounding in basic physics, chemistry, biology, and mathematics. Here, students may select courses depending on their interest. With this introduction to the Earth's environment and equipped with a knowledge of the basic sciences, students are prepared to choose a set of upper-level courses in consultation with an undergraduate adviser. All environmental science majors are required to complete a research project, providing a practical application of mastered course work. This research culminates in a senior thesis. The research and the thesis are usually done at Lamont-Doherty Earth Observatory with guidance from a faculty member or a research scientist. However, other options are also possible.

Environmental science majors have an option to complete the special concentration in environmental biology for environmental science majors.

Earth Science Major
The major in Earth science follows a similar rationale but is designed to allow students to pursue particular fields of the Earth sciences in greater depth. Compared with the environmental science major, one fewer introductory course is required, while one additional advanced course should be part of the plan of study. The Earth science major also offers the possibility of in-depth field experience through a six- to eight-week geology summer field course, arrangements for which are made through another university. The research and senior thesis capstone requirements are the same as for the environmental science major. The geology summer field course may be used as an alternative means of fulfilling the capstone requirement in the Earth science major.

Concentrations
The program for concentrators serves students who want more exposure to Earth and environmental science than is provided by introductory-level courses. The program aims to provide concentrators with experience in data analysis and a thorough introduction to the Earth's systems.

The concentrations in environmental science and in Earth science are designed to give students an understanding of how the Earth works and an introduction to the methods used to investigate Earth processes, including their capabilities and limitations. Concentrators often join the social professions (e.g., business, law, medicine, etc.) and take with them a strong scientific background. They take the same introductory courses as the majors, but fewer basic science and upper-level courses are required.

In addition to the environmental science and Earth science concentrations, the department sponsors a special concentration which must be done in conjunction with the environmental biology major. Students should be aware that they must complete the environmental biology major in order to receive credit for the special concentration. There is also a special concentration in environmental biology for environmental science majors sponsored by the Department of Ecology, Evolution, and Environmental Biology.

Departmental Honors
The Department of Earth and Environmental Science awards departmental honors to the major or majors in Earth science or environmental science judged to have the best overall academic record.
The award is accorded to no more than 10% of the graduating class, or one student in the case of a class smaller than 10. A grade point average of at least 3.6 in the major and a senior thesis or equivalent research of high quality are required. Students who wish to be considered should contact the director of undergraduate studies early in their senior year.

Professors
Nicholas Christie-Blick
Joel E. Cohen
Peter B. de Menocal
Hugh Ducklow
Sonya Dyhrman
Peter Eisenberger
Göran Ekström
Arlene M. Fiore
Steven L. Goldstein
Arnold L. Gordon
Kevin L. Griffin
Alex Halliday
Sidney R. Hemming (Chair)
Bärbel Hönisch
Peter B. Kelemen
Galen McKinley
Jerry F. McManus (Associate Chair)
William H. Menke
John C. Mutter
Meredith Nettles
Paul E. Olsen
Terry A. Plank
Lorenzo M. Polvani
G. Michael Purdy
Peter Schlosser
Christopher H. Scholz
Adam H. Sobel
Sean C. Solomon
Marc Spiegelman
Martin Stute (Barnard)
Maria Tolstoy
Renata Wentzovich

Associate Professors
Ryan Abernathey
Kerry Key
Heather Savage

Assistant Professors
Jacqueline Austermann
Roisin Commane
Jonathan Kingslake
Yves Moussallam

Adjunct Professors
Robert F. Anderson
W. Roger Buck IV
Denton Ebel
John J. Flynn
James Gaherty
Lisa M. Goddard
Arthur Lerner-Lam
Alberto Malinverno
Douglas G. Martinson
Ronald L. Miller
Mark A. Norell
Dorothy M. Peteet
Maureen Raymo
Andrew Robertson
Joerg M. Schaefer
Christopher Small
Minfang Ting
Felix Waldhauser
Spahr C. Webb
Gisela Winckler

Adjunct Associate Professors
Alessandra Giannini
Andrew Juhl

Lecturers
Pietro Ceccato
Cornelia Class
Andreas Turnherr
Kevin Uno
Christopher Zappa

Associates
Erin Coughlin
Brian Kahn
Andrew Kruczkiewicz
Catherine Vaughan

Emeritus
Mark Cane
James Hays
Paul Richards
Lynn Sykes
David Walker

Guidelines for all Earth and Environmental Sciences Majors, Concentrators, and Special Concentrators
Advising
All majors and concentrators, when planning their programs of study, should regularly consult the directors of undergraduate studies, who can be contacted through the department office on the fifth floor of Schermerhorn. The requirements are different for each major and concentration and must be met in conjunction with the general requirements for the bachelor's degree. Declaration of the major must be approved by the department and filed in the departmental office.

Substitutions and Exceptions
1. Higher-level courses may be used to satisfy supporting mathematics and science requirements for students with Advanced Placement preparation with the permission of the major adviser.
2. In addition to the courses listed for the depth, breadth and related courses requirements, several graduate-level courses offered in the department as well as several advanced courses offered at Barnard may be substituted with the permission of the major adviser.
3. **1000-level courses in the Earth and Environmental Sciences Department** cannot be used toward meeting the requirements of any of the majors, concentrations, or special concentrations.

4. The following course is not suitable for undergraduates and cannot be used toward meeting any of the requirements for the majors, concentrations, or special concentrations: EESC GU4930 Earth’s Oceans and Atmosphere.

Grading

A grade of C- or better must be obtained for a course to count toward the majors, concentrations, or special concentrations. The grade of P is not acceptable, but a course taken Pass/D/Fail may be counted if and only if the P is uncovered by the Registrar’s deadline.

Major in Earth Science

Please read **Guidelines for all Earth and Environmental Sciences Majors, Concentrators, and Special Concentrators** above.

The major in Earth science requires a minimum of 45.5 points, distributed as follows:

Foundation Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESC UN2100</td>
<td>Earth’s Environmental Systems: The Climate System</td>
</tr>
<tr>
<td>EESC UN2200</td>
<td>Earth’s Environmental Systems: The Solid Earth System</td>
</tr>
</tbody>
</table>

Students who wish to take both EESC UN2100 Earth’s Environmental Systems: The Climate System and EESC UN2300 Earth’s Environmental Systems: The Life System can include one of these under breadth and related fields below.

Supporting Mathematics and Science Courses

One semester of Calculus at the level of Calculus I or higher (3 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH UN1101</td>
<td>Calculus I</td>
</tr>
</tbody>
</table>

Select one of the following three-course sequences:

CHEM UN1403
- CHEM UN1404
- PHYS UN1201
- CHEM UN1403
- PHYS UN1201
- PHYS UN1202

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM UN1403</td>
<td>General Chemistry I (Lecture)</td>
</tr>
<tr>
<td></td>
<td>and General Chemistry II (Lecture)</td>
</tr>
<tr>
<td></td>
<td>and General Physics I</td>
</tr>
<tr>
<td></td>
<td>General Chemistry I (Lecture)</td>
</tr>
<tr>
<td></td>
<td>and General Physics I</td>
</tr>
<tr>
<td></td>
<td>and General Physics II</td>
</tr>
</tbody>
</table>

Capstone Experience

Select one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESC BC3800</td>
<td>Senior Research Seminar</td>
</tr>
<tr>
<td></td>
<td>and Environmental Science Senior Seminar</td>
</tr>
<tr>
<td>EESC BC3801</td>
<td>Senior Research Seminar</td>
</tr>
<tr>
<td></td>
<td>and Environmental Science Senior Seminar</td>
</tr>
</tbody>
</table>

A six to eight week summer geology field course

Breadth and Related Fields Requirement

A minimum of 6 points (two courses) chosen with the major adviser are required.

Breadth and related field courses are science courses relevant for an Earth science major that do not require an Earth science background.

Several such courses are offered at the 2000-, 3000- and 4000-level in the department and at Barnard. Examples include:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESC UN2100</td>
<td>Earth’s Environmental Systems: The Climate System</td>
</tr>
<tr>
<td>EESC UN2300</td>
<td>Earth’s Environmental Systems: The Life System</td>
</tr>
<tr>
<td>EESC UN3010</td>
<td>Field Geology</td>
</tr>
<tr>
<td>EESC BC3017</td>
<td>Environmental Data Analysis</td>
</tr>
<tr>
<td>EESC GU4050</td>
<td>Global Assessment and Monitoring Using Remote Sensing</td>
</tr>
<tr>
<td>EESC GU4600</td>
<td>Earth Resources and Sustainable Development</td>
</tr>
<tr>
<td>EESC GU4917</td>
<td>Earth/Human Interactions</td>
</tr>
<tr>
<td>EAEE E2002</td>
<td>Alternative energy resources</td>
</tr>
</tbody>
</table>

Also included among breadth and related fields courses are science, mathematics, statistics, and engineering courses offered by other departments that count toward fulfilling degree requirements in those departments.

Depth Requirement

A minimum of 12 points (four courses) chosen with the major adviser to provide depth in the field of Earth science.

These courses build on the foundation and supporting courses listed above and provide a coherent focus in some area of Earth science. Students should include at least one of the following in their course of study:

Areas of focus include one of the courses listed above and three or more additional courses. Students are not required to specialize in a focus area, but examples are given below for those who choose to do so.

Geological Science

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESC GU4090</td>
<td>Introduction to Geochronology and Thermochronology</td>
</tr>
<tr>
<td>EESC GU4113</td>
<td>Introduction to Mineralogy</td>
</tr>
<tr>
<td>EESC GU4223</td>
<td>Sedimentary Geology</td>
</tr>
<tr>
<td>EESC GU4230</td>
<td>Crustal Deformation</td>
</tr>
<tr>
<td>EESC GU4701</td>
<td>Introduction to Igneous Petrology</td>
</tr>
<tr>
<td>EESC GU4887</td>
<td>Isotope Geology I</td>
</tr>
<tr>
<td>EESC GU4947</td>
<td>Plate Tectonics</td>
</tr>
</tbody>
</table>

It is strongly recommended that students focusing in geological science take the summer geology field course as their capstone experience.

Geochemistry

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESC UN3101</td>
<td>Geochemistry for a Habitable Planet</td>
</tr>
<tr>
<td>EESC UN3201</td>
<td>Solid Earth Dynamics</td>
</tr>
</tbody>
</table>

Geochemistry

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESC UN3101</td>
<td>The Earth’s Carbon Cycle</td>
</tr>
<tr>
<td>EESC BC3016</td>
<td>Environmental Measurements</td>
</tr>
<tr>
<td>EESC BC3200</td>
<td>Ecotoxicology</td>
</tr>
<tr>
<td>EESC GU4090</td>
<td>Introduction to Geochronology and Thermochronology</td>
</tr>
<tr>
<td>EESC GU4113</td>
<td>Introduction to Mineralogy</td>
</tr>
<tr>
<td>EESC GU4701</td>
<td>Introduction to Igneous Petrology</td>
</tr>
<tr>
<td>EESC GU4885</td>
<td>The Chemistry of Continental Waters</td>
</tr>
<tr>
<td>EESC GU4887</td>
<td>Isotope Geology I</td>
</tr>
<tr>
<td>EESC GU4926</td>
<td>Principles of Chemical Oceanography</td>
</tr>
</tbody>
</table>
Major in Environmental Science

Please read Guidelines for all Earth and Environmental Sciences Majors, Concentrators, and Special Concentrators above.

The major in environmental science requires a minimum of 47 points, distributed as follows:

Foundation Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESC UN2100</td>
<td>Earth's Environmental Systems: The Climate System</td>
</tr>
<tr>
<td>EESC UN2200</td>
<td>Earth's Environmental Systems: The Solid Earth System</td>
</tr>
<tr>
<td>EESC UN2300</td>
<td>Earth's Environmental Systems: The Life System</td>
</tr>
</tbody>
</table>

Supporting Mathematics and Science Courses

One semester of Calculus at the level of Calculus I or higher (3 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH UN1101</td>
<td>Calculus I</td>
</tr>
</tbody>
</table>

Select one of the following three-course sequences:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM UN1403</td>
<td>General Chemistry I (Lecture)</td>
</tr>
<tr>
<td>- CHEM UN1404</td>
<td>General Chemistry II (Lecture)</td>
</tr>
<tr>
<td>- PHYS UN1201</td>
<td>General Physics I</td>
</tr>
<tr>
<td>CHEM UN1403</td>
<td>General Chemistry I (Lecture)</td>
</tr>
<tr>
<td>- PHYS UN1201</td>
<td>General Physics I</td>
</tr>
<tr>
<td>- PHYS UN1202</td>
<td>General Physics II</td>
</tr>
<tr>
<td>CHEM UN1403</td>
<td>General Chemistry I (Lecture)</td>
</tr>
<tr>
<td>- EEBB UN2001</td>
<td>Environmental Biology I: Elements to Organisms and General Physics I</td>
</tr>
<tr>
<td>- PHYS UN1201</td>
<td>Environmental Biology I: Elements to Organisms and General Physics I</td>
</tr>
</tbody>
</table>

Capstone Experience

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESC BC3800</td>
<td>Senior Research Seminar</td>
</tr>
<tr>
<td>or EESC BC3801</td>
<td>Senior Research Seminar</td>
</tr>
<tr>
<td>EESC UN3901</td>
<td>Environmental Science Senior Seminar</td>
</tr>
</tbody>
</table>

Breadth and Related Fields Requirement

A minimum of 6 points (two courses) chosen with the major adviser are required.

Breadth and related field courses are science courses relevant for an environmental science major that do not require an environmental science background. Several such courses are offered at the 2000-, 3000- and 4000-level in the department and at Barnard. Examples include:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESC BC3017</td>
<td>Environmental Data Analysis</td>
</tr>
<tr>
<td>EESC GU4050</td>
<td>Global Assessment and Monitoring Using Remote Sensing</td>
</tr>
<tr>
<td>EESC GU4600</td>
<td>Earth Resources and Sustainable Development</td>
</tr>
<tr>
<td>EESC GU4917</td>
<td>Earth/Human Interactions</td>
</tr>
<tr>
<td>EESC UN3010</td>
<td>Field Geology</td>
</tr>
</tbody>
</table>

Also included among breadth and related fields courses are science, mathematics, statistics, and engineering courses offered by other departments that count toward fulfilling degree requirements in those departments.

Depth Requirement

A minimum of 9 points (three courses) chosen with the major adviser to provide depth in the field of environmental science.

These courses build on the foundation and supporting courses listed above and provide a coherent focus in some area of environmental science. Students should include at least one of the following in their course of study:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESC UN3101</td>
<td>Geochemistry for a Habitable Planet</td>
</tr>
<tr>
<td>or EESC UN3201</td>
<td>Solid Earth Dynamics</td>
</tr>
</tbody>
</table>

Areas of focus include one of the courses listed above and two or more additional courses. Students are not required to specialize in a focus area, but examples are given below for those who choose to do so.

Environmental Geology

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESC GU4076</td>
<td>Geologic Mapping</td>
</tr>
<tr>
<td>EESC GU4480</td>
<td>Paleobiology and Earth System History</td>
</tr>
<tr>
<td>EAE E3221</td>
<td>Environmental geophysics</td>
</tr>
</tbody>
</table>
It is recommended that students focusing in environmental geology also take EESC W4050 Remote Sensing.

Environmental Geochemistry
- EESC UN3015: The Earth's Carbon Cycle
- EESC GU4885: The Chemistry of Continental Waters
- EESC GU4887: Isotope Geology I
- EESC GU4924: Introduction to Atmospheric Chemistry
- EESC GU4888: Stable Isotope Geochemistry
- EESC GU4926: Principles of Chemical Oceanography

Hydrology
- EESC GU4076: Geologic Mapping
- EESC GU4835: Wetlands and Climate Change
- EESC GU4885: The Chemistry of Continental Waters
- EESC BC3025: Hydrology
- EAEE E3221: Environmental geophysics

Climate Change
- EESC UN3015: The Earth's Carbon Cycle
- EESC GU4008: Introduction to Atmospheric Science
- EESC GU4330: Introduction to Terrestrial Paleoclimate
- EESC GU4480: Paleobiology and Earth System History
- EESC GU4835: Wetlands and Climate Change
- EESC GU4920: Paleoceanography

It is recommended that students focusing in environmental geology also take EESC GU4050 Remote Sensing.

Energy and Resources
- EESC GU4076: Geologic Mapping
- EESC GU4701: Introduction to Igneous Petrology
- EAEE E2002: Alternative energy resources

Concentration in Environmental Science

Please read Guidelines for all Earth and Environmental Sciences Majors, Concentrators, and Special Concentrators above.

The concentration in environmental science requires a minimum of 25.5 points, distributed as follows:

Foundation Courses
- EESC UN2100: Earth's Environmental Systems: The Climate System
- EESC UN2200: Earth's Environmental Systems: The Solid Earth System
- EESC UN2300: Earth's Environmental Systems: The Life System

Supporting Mathematics and Science Courses
Two science or mathematics courses (6-7 points) selected from among those listed for the environmental science major above.

Depth and Breadth and Related Fields Requirements
A minimum of 6 points (two courses) is required as follows:
- EESC UN3101: Geochemistry for a Habitable Planet
- or EESC UN3201: Solid Earth Dynamics

 One additional course selected from those listed under either Depth Requirement or Breadth and Related Fields Requirement for the environmental science major above.

Special Concentration in Environmental Science for Majors in Environmental Biology

Please read Guidelines for all Earth and Environmental Sciences Majors, Concentrators, and Special Concentrators above.

The Department of Earth and Environmental Sciences sponsors a special concentration which must be done in conjunction with the environmental biology major. Students should be aware that they must complete the environmental biology major in order to receive credit for the special concentration.

The special concentration in environmental science requires a minimum of 31.5 points, distributed as follows:

Introductory Environmental Science (13.5 points)
- EESC UN2100: Earth's Environmental Systems: The Climate System
- EESC UN2200: Earth's Environmental Systems: The Solid Earth System
- EESC UN2300: Earth's Environmental Systems: The Life System

Introductory Science (6 points)
Two courses in chemistry, physics, mathematics, or environmental biology from the supporting mathematics and science list for the environmental science major above.
Advanced Environmental Science (12 points)

Four courses at the 3000-level or above chosen from those recommended for the environmental science major above.

Advanced courses used to fulfill requirements in the environmental biology major cannot count toward requirements for the special concentration.

Special Concentration in Environmental Biology for Majors in Environmental Science

Please read Guidelines for all Earth and Environmental Sciences Majors, Concentrators, and Special Concentrators above.

The Department of Ecology, Evolution, and Environmental Biology sponsors a special concentration which must be done in conjunction with the environmental science major. Students should be aware that they must complete the environmental science major in order to receive credit for the special concentration.

The special concentration in environmental biology requires a minimum of 39 points, distributed as follows:

Introductory Environmental Biology and Environmental Science (17 points)

- EEEB UN2001 Environmental Biology I: Elements to Organisms
- EESC UN2100 Earth's Environmental Systems: The Climate System
- EESC UN2200 Earth's Environmental Systems: The Solid Earth System
- EEEB UN2002 Environmental Biology II: Organisms to the Biosphere

Introductory Science (13 points)

Select one of the following chemistry sequences:

- CHEM UN1403 General Chemistry I (Lecture) and General Chemistry II (Lecture)
- CHEM UN1604 Intensive General Chemistry (Lecture) and Intensive General Chemistry Laboratory

One term of statistics such as the following:

- STAT UN1101 Introduction to Statistics
- STAT UN1201 Calculus-Based Introduction to Statistics
- BIOL BC2286 Statistics and Research Design
- EEEB UN3005 Introduction to Statistics for Ecology and Evolutionary Biology
- EEEB UN3087 Conservation Biology

Advanced Environmental Biology (9 points)

Three additional advanced EEEB courses (3000-level and above), each chosen from a different curricular area (evolution/genetics, ecology/behavior/conervation, anatomy/physiology/diversity, biology laboratory courses).

Advanced courses used to fulfill requirements in the environmental science major cannot count toward requirements for the special concentration.

Sustainable Development

Students interested in sustainable development should refer to the Sustainable Development section in this Bulletin.

Fall 2019

EESC UN1001 Dinosaurs and the History of Life: Lectures and Lab. 4 points.

CC/GS: Partial Fulfillment of Science Requirement

Given in alternate years.

Prerequisites: Recommended preparation: basic high school science and math.

Lab is a hands-on introduction to geochronology, paleontology, and historical geology with field trips. (See W1401 for lectures only.) Dinosaurs: a spectacular example of a common, highly successful form of life, dominant for 135 million years. Where did they come from? Why were they so successful? Why did they die out? A basic introduction to interface between geology and biology.

Fall 2019: EESC UN1001

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESC 1001</td>
<td>001/55552</td>
<td>M W 1:10pm - 2:25pm, 313 Fayerweather</td>
<td>Paul Olsen</td>
<td>4</td>
<td>16/40</td>
</tr>
<tr>
<td>EESC 1001</td>
<td>001/55552</td>
<td>M 4:10pm - 7:00pm, 603 Schermerhorn Hall</td>
<td>Paul Olsen</td>
<td>4</td>
<td>16/40</td>
</tr>
</tbody>
</table>

EESC UN1201 Environmental Risks and Disasters. 3 points.

CC/GS: Partial Fulfillment of Science Requirement

Priority given to first-years and sophomores.

Prerequisites: high school science and math.

An introduction to risks and hazards in the environment. Different types of hazards are analyzed and compared: natural disasters, such as tornados, earthquakes, and meteorite impacts; acute and chronic health effects caused by exposure to radiation and toxic substances such as radon, asbestos, and arsenic; long-term societal effects due to environmental change, such as sea level rise and global warming. Emphasizes the basic physical principles controlling the hazardous phenomena and develops simple quantitative methods for making scientifically reasoned assessments of the threats (to health and wealth) posed by various events, processes, and exposures. Discusses methods of risk mitigation and sociological, psychological, and economic aspects of risk control and management.

Fall 2019: EESC UN1201

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESC 1201</td>
<td>001/10338</td>
<td>T Th 8:40am - 9:55am, 603 Schermerhorn Hall</td>
<td>Goran Ekstrom</td>
<td>3</td>
<td>28/50</td>
</tr>
</tbody>
</table>
EESC UN1401 Dinosaurs and the History of Life: Lectures. 3 points.
CC/GS: Partial Fulfillment of Science Requirement
Given in alternate years.

Prerequisites: Recommended preparation: basic high school science and math.
Dinosaurs: a spectacular example of a common, highly successful form of life, dominant for 135 million years. Where did they come from? Why were they so successful? Why did they die out? A basic introduction to the interface between geology and biology.

Fall 2019: EESC UN1401

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESC 1401</td>
<td>001/55553</td>
<td>M W 1:10pm - 2:25pm 313 Fayerweather</td>
<td>Paul Olsen</td>
<td>3</td>
<td>53/80</td>
</tr>
</tbody>
</table>

EESC UN1600 Earth Resources and Sustainable Development. 3 points.
CC/GS: Partial Fulfillment of Science Requirement

Prerequisites: none; high school chemistry recommended.
Survey of the origin and extent of mineral resources, fossil fuels, and industrial materials, that are non renewable, finite resources, and the environmental consequences of their extraction and use, using the textbook Earth Resources and the Environment, by James Craig, David Vaughan and Brian Skinner. This course will provide an overview, but will include focus on topics of current societal relevance, including estimated reserves and extraction costs for fossil fuels, geological storage of CO2, sources and disposal methods for nuclear energy fuels, sources and future for luxury goods such as gold and diamonds, and special, rare materials used in consumer electronics (e.g., “Coltan”, mostly from Congo) and in newly emerging technologies such as superconducting magnets and rechargeable batteries (e.g., heavy rare earth elements, mostly from China). Guest lectures from economists, commodity traders and resource geologists will provide “real world” input. Discussion Session Required.

Fall 2019: EESC UN1600

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESC 1600</td>
<td>001/55513</td>
<td>T Th 1:10pm - 2:25pm 309 Havemeyer Hall</td>
<td>Peter Kelemen</td>
<td>3</td>
<td>46/50</td>
</tr>
</tbody>
</table>

EESC UN2100 Earth’s Environmental Systems: The Climate System. 4.5 points.
Priority given to Columbia and Barnard earth science, environmental science, and environmental biology majors should enrollment limits be reinstated.

Prerequisites: high school algebra. Recommended preparation: high school chemistry and physics; and one semester of college science.
Origin and development of the atmosphere and oceans, formation of winds, storms and ocean currents, reasons for changes through geologic time. Recent influence of human activity: the ozone hole, global warming, water pollution. Laboratory exploration of topics through demonstrations, experimentation, computer data analysis, and modeling. Students majoring in Earth and Environmental Sciences should plan to take EESC W2100 before their senior year to avoid conflicts with Senior Seminar.

Fall 2019: EESC UN2100

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESC 2100</td>
<td>001/55514</td>
<td>T Th 10:10am - 11:25am 603 Schermerhorn Hall</td>
<td>Jerry McManus, Adam Sobel</td>
<td>4.5</td>
<td>46/50</td>
</tr>
<tr>
<td>EESC 2100</td>
<td>001/55514</td>
<td>T 4:10pm - 7:00pm 555 Schermerhorn Hall</td>
<td>Jerry McManus, Adam Sobel</td>
<td>4.5</td>
<td>46/50</td>
</tr>
</tbody>
</table>

Spring 2020: EESC UN2100

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESC 2100</td>
<td>001/12430</td>
<td>T Th 10:10am - 11:25am 603 Schermerhorn Hall</td>
<td>Mingfang Ting, Gisela Winckler</td>
<td>4.5</td>
<td>40/50</td>
</tr>
<tr>
<td>EESC 2100</td>
<td>001/12430</td>
<td>T 4:10pm - 7:00pm 555 Ext Schermerhorn Hall</td>
<td>Mingfang Ting, Gisela Winckler</td>
<td>4.5</td>
<td>40/50</td>
</tr>
</tbody>
</table>
EESC UN2200 Earth’s Environmental Systems: The Solid Earth System. 4.5 points.
CC/GS: Partial Fulfillment of Science Requirement
Priority given to Columbia and Barnard earth science, environmental science, and environmental biology majors should enrollment limits be necessary.

Prerequisites: high school algebra and chemistry. Recommended preparation: high school physics.
Prerequisites: high school algebra, chemistry, and physics. Exploration of how the solid Earth works, today and in the past, focusing on Earth in the Solar system, continents and oceans, the Earth’s history, mountain systems on land and sea, minerals and rocks, weathering and erosion, glaciers and ice sheets, the hydrological cycle and rivers, geochronology, plate tectonics, earthquakes, volcanoes, energy resources. Laboratory exploration of topics through examination of rock samples, experimentation, computer data analysis, field exercises, and modeling. Columbia and Barnard majors should plan to take W2200 before their senior year to avoid conflicts with the Senior Seminar.

<table>
<thead>
<tr>
<th>Course</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESC 2200</td>
<td>001/55515</td>
<td>T Th 1:10pm - 2:25pm</td>
<td>Maria Tolstoy, Jonathan Kingslake</td>
<td>4.5</td>
<td>36/50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>603 Schermerhorn Hall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EESC 2200</td>
<td>001/55515</td>
<td>T 4:10pm - 7:00pm</td>
<td>Maria Tolstoy, Jonathan Kingslake</td>
<td>4.5</td>
<td>36/50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>558 Ext Schermerhorn Hall</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Spring 2020: EESC UN2200

<table>
<thead>
<tr>
<th>Course</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESC 2200</td>
<td>001/12432</td>
<td>T Th 2:40pm - 3:55pm</td>
<td>Steven Goldstein, Sidney Hemming</td>
<td>4.5</td>
<td>61/56</td>
</tr>
<tr>
<td></td>
<td></td>
<td>603 Schermerhorn Hall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EESC 2200</td>
<td>001/12432</td>
<td>T 4:10pm - 7:00pm</td>
<td>Steven Goldstein, Sidney Hemming</td>
<td>4.5</td>
<td>61/56</td>
</tr>
<tr>
<td></td>
<td></td>
<td>603 Schermerhorn Hall</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EESC UN2330 Science for Sustainable Development. 3 points.
CC/GS: Partial Fulfillment of Science Requirement

Provides an introduction to natural science approaches essential to understanding central issues of sustainable development. Topics may include: climate, ecology/agriculture/biodiversity, energy, natural disasters, population dynamics, public health and water resources. Treatment includes background, methods and applications from selected settings throughout the world. Taught by specialists in a number of fields.

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESC 2330</td>
<td>001/55505</td>
<td>M W 2:40pm - 3:55pm</td>
<td>John Mutter, Ruth DeFries</td>
<td>3</td>
<td>102/122</td>
</tr>
<tr>
<td></td>
<td></td>
<td>860 Alfred Lerner Hall</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EESC UN3101 Geochronology for a Habitable Planet. 3 points.
Prerequisites: Any 1000-level or 2000-level EESC course; MATH UN1101 Calculus I and CHEM UN1403 General Chemistry I or their equivalents. The origin, evolution, and future of our planet, based on the book How to Build a Habitable Planet by Wallace S. Broecker. This course will focus on the geochemical processes that built Earth from solar material, led to its differentiation into continents and ocean, and have maintained its surface at a comfortable temperature. Students will participate in a hands-on geochemistry project at Lamont-Doherty Earth Observatory.

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESC 3101</td>
<td>001/55506</td>
<td>T Th 11:40am - 12:55pm</td>
<td>Terry Plank</td>
<td>3</td>
<td>25/35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>417 Schermerhorn Hall</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EESC UN3400 Introduction to Computational Earth Science. 3 points.
Prerequisites: Required: at least a semester of calculus and physics; any 1000-level or 2000-level EESC course. Recommended: EESC3201 (Solid Earth Dynamics).

Computer models are essential for understanding the behavior of complex natural systems in geosciences. This course is an introduction to writing computer models to simulate Earth processes. Students will learn methods for numerical modeling of a variety of geoscience topics, such as seismic waves, groundwater flow, glacier growth, ocean currents and more. Simulations will be created by learning to program with a user-friendly language (Python). Student learning will be facilitated through a combination of lectures, in-class exercises, homework assignments and a final project on a student-selected modeling topic.

Fall 2019: EESC UN3400

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESC 3400</td>
<td>001/55554</td>
<td>T Th 2:40pm - 3:55pm</td>
<td>Kerry Key</td>
<td>3</td>
<td>17/30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>558 Ext Schermerhorn Hall</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EESC UN3901 Environmental Science Senior Seminar. 3 points.
Prerequisites: EESC BC3800 or EESC BC3801 and a good grounding in basic sciences.

Guided, independent, in-depth research culminating in the senior thesis in the spring. Includes discussion about scientific presentations and posters, data analysis, library research methods and scientific writing. Students review work in progress and share results through oral reports. Weekly seminar to review work in progress and share results through oral and written reports.

Fall 2019: EESC UN3901

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESC 3901</td>
<td>001/55556</td>
<td>Th 4:10pm - 6:00pm</td>
<td>Martin Stute, Jacqueline Austermann, Roxin Commane</td>
<td>3</td>
<td>12/50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>530 Altschul Hall</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Spring 2020: EESC UN3901

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESC 3901</td>
<td>001/19645</td>
<td>Th 4:10pm - 6:00pm</td>
<td>Martin Stute</td>
<td>3</td>
<td>12/50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Room TBA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EESC GU4008 Introduction to Atmospheric Science. 3 points.
CC/GS: Partial Fulfillment of Science Requirement

Prerequisites: advanced calculus and general physics, or the instructor’s permission.
Basic physical processes controlling atmospheric structure: thermodynamics; radiation physics and radiative transfer; principles of atmospheric dynamics; cloud processes; applications to Earth’s atmospheric general circulation, climatic variations, and the atmospheres of the other planets.

Fall 2019: EESC GU4008

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESC 4008</td>
<td>001/55561</td>
<td>Th 4:10pm - 6:40pm 214 Seeley W. Mudd Building</td>
<td>Polvani</td>
<td>3</td>
<td>26/30</td>
</tr>
</tbody>
</table>

EESC GU4050 Global Assessment and Monitoring Using Remote Sensing. 3 points.
CC/GS: Partial Fulfillment of Science Requirement, Lab Required
Enrollment limited to 24. Priority given to graduate students in the natural sciences and engineering.

Prerequisites: Course Cap 20 students. Priority given to graduate students in the natural sciences and engineering. Advanced level undergraduates may be admitted with the instructor’s permission.
Calculus I and Physics I & II are required for undergraduates who wish to take this course.

General introduction to fundamentals of remote sensing; electromagnetic radiation, sensors, interpretation, quantitative image analysis and modeling. Example applications in the Earth and environmental sciences are explored through the analysis of remote sensing imagery in a state-or-the-art visualization laboratory.

Fall 2019: EESC GU4050

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESC 4050</td>
<td>001/55526</td>
<td>Th 5:40pm - 6:55pm 417 Schermerhorn Hall</td>
<td>Christopher Small</td>
<td>3</td>
<td>9/20</td>
</tr>
<tr>
<td>EESC 4050</td>
<td>001/55526</td>
<td>F 9:00am - 10:45am 558 Ext Schermerhorn Hall</td>
<td>Christopher Small</td>
<td>3</td>
<td>9/20</td>
</tr>
</tbody>
</table>

EESC GU4113 Introduction to Mineralogy. 4 points.
Prerequisites: introductory geology or the equivalent, elementary college physics and chemistry, or the instructor’s permission.
Minerals come in dazzling colors, amazing shapes and with interesting optical effects. But mineralogy is also an essential tool for the understanding of Earth evolution. Minerals represent fundamental building blocks of the Earth system and planetary bodies. Minerals form through geological and biological processes such as igneous, metamorphic and sedimentary from high to low temperatures, from the deep interior to the Earth’s surface and related to volcanism, tectonics, weathering, climate and life. Minerals are one of our most important sources of information on such processes through Earth’s history. Minerals also represent important natural resources and are fundamental to the global economy and modern technology as we know it.

The goal of this class is to (1) understand the physical and chemical properties of minerals, (2) learn techniques of mineral identification with an emphasis on optical mineralogy, (3) understand the relationship between minerals and the broader geological context.

EESC GU4480 Paleobiology and Earth System History. 3 points.
CC/GS: Partial Fulfillment of Science Requirement
Given in alternate years.

An overview of the archives in which evidence of terrestrial paleoclimate is preserved, the approaches to developing and applying proxies of climate from these archives, approaches for constraining the time represented by the information, and interpretations that have been developed from such archives. Important archives to be included are ice cores, caves, wetlands, lakes, trees, and moraines. The time interval covered will be mostly the last few tens of thousand years, and chronometers based on radiocarbon, U-series and surface exposure dating will be presented. The course will consist of a formal lecture on one day and a recitation on the second day which will emphasize examples and problem solving.

EESC GU4480 Paleobiology and Earth System History. 3 points.
CC/GS: Partial Fulfillment of Science Requirement
Given in alternate years.

Prerequisites: high-school biology, introductory college-level geology.
Course is a survey of the biological and biogeochemical evolution of the Earth System. Students focus not only on a narrative of the panoply of biodiversity though time, but also on the development and the testing of evolutionary and geochemical hypotheses within a historical science. Case studies of mass extinctions and biological innovation as well as current topics and debates will be examined in detail. There are 4 full-day field trips.

Fall 2019: EESC GU4480

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESC 4480</td>
<td>001/55555</td>
<td>T 2:40pm - 3:55pm 603 Schermerhorn Hall</td>
<td>Paul Olsen</td>
<td>3</td>
<td>11/50</td>
</tr>
</tbody>
</table>
EESC GU4550 Plant Ecophysiology. 3 points.
CC/GS: Partial Fulfillment of Science Requirement
Given in alternate years.

Prerequisites: General biology or the instructor’s permission.
Given in alternate years. Plant organinal responses to external environmental conditions and the physiological mechanisms of plants that enable these responses. An evolutionary approach is taken to analyze the potential fitness of plants and plant survival based on adaptation to external environmental factors. One weekend field trip will be required.

Fall 2019: EESC GU4550
<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESC 4550</td>
<td>001/55530</td>
<td>T Th 1:10pm - 2:25pm 555 Ext Schermerhorn Hall</td>
<td>Kevin Griffin</td>
<td>3</td>
<td>18/25</td>
</tr>
</tbody>
</table>

EESC GU4600 Earth Resources and Sustainable Development. 3 points.
CC/GS: Partial Fulfillment of Science Requirement

Prerequisites: none; high school chemistry recommended.
Survey of the origin and extent of mineral resources, fossil fuels, and industrial materials, that are non renewable, finite resources, and the environmental consequences of their extraction and use, using the textbook Earth Resources and the Environment, by James Craig, David Vaughan and Brian Skinner. This course will provide an overview, but will include focus on topics of current societal relevance, including estimated reserves and extraction costs for fossil fuels, geological storage of CO2, sources and disposal methods for nuclear energy fuels, sources and future for luxury goods such as gold and diamonds, and special, rare materials used in consumer electronics (e.g., “Coltan”, mostly from Congo) and in newly emerging technologies such as superconducting magnets and rechargeable batteries (e.g., heavy rare earth elements, mostly from China). Guest lectures from economists, commodity traders and resource geologists will provide “real world” input.

Fall 2019: EESC GU4600
<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESC 4600</td>
<td>001/55520</td>
<td>T Th 1:10pm - 2:25pm 309 Havemeyer Hall</td>
<td>Peter Kelemen</td>
<td>3</td>
<td>9/30</td>
</tr>
</tbody>
</table>

EESC GU4835 Wetlands and Climate Change. 3 points.
Given in alternate years. Enrollment limited to 20. Priority given to juniors and seniors.

Prerequisites: introductory biology or chemistry, or the instructor’s permission.
Analysis of modern wetland dynamics and the important ecological, biogeochemical, and hydrological functions taking place in marshes, bogs, fens, and swamps, with a field emphasis. Wetlands as fossil repositories, the paleoenvironmental history they provide, and their role in the carbon cycle. Current wetland destruction, remediation attempts, and valuation. Laboratory analysis and field trips.

Fall 2019: EESC GU4835
<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESC 4835</td>
<td>001/55531</td>
<td>T Th 10:10am - 11:25am 506 Schermerhorn Hall</td>
<td>Dorothy Peteet</td>
<td>3</td>
<td>22/36</td>
</tr>
</tbody>
</table>

EESC GU4917 Earth/Human Interactions. 3 points.
CC/GS: Partial Fulfillment of Science Requirement
Enrollment limited to 20. Priority given to senior natural and social science majors, then graduate students.

Based upon the most current understanding of our planet and our impact on it and how we make decisions about the threats we face, a new knowledge-based “green” framework is developed for our relationship to our planet and to each other as well as its general implications for human stewardship of our planet and meeting the needs of 8 billion humans. This new framework is explored using case studies, class participation, and term papers on specific current scientific and policy issues like global warming, renewable energy, carbon dioxide removal and their impact on the sustainability and resilience of our planet and ourselves.

Fall 2019: EESC GU4917
<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESC 4917</td>
<td>001/55562</td>
<td>M W 1:10pm - 2:25pm 555 Schermerhorn Hall</td>
<td>Peter Eisenberger</td>
<td>3</td>
<td>5/25</td>
</tr>
</tbody>
</table>

EESC GU4925 Principles of Physical Oceanography. 3 points.
CC/GS: Partial Fulfillment of Science Requirement

Prerequisites: Recommended preparation: a solid background in mathematics, physics, and chemistry.
Physical properties of seawater, water masses and their distribution, sea-air interaction influence on the ocean structure, basic ocean circulation pattern, relation of diffusion and advection with respect to distribution of ocean properties, ocean tides and waves, turbulence, and introduction to ocean dynamics.

Fall 2019: EESC GU4925
<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESC 4925</td>
<td>001/55508</td>
<td>T Th 2:40pm - 3:55pm 555 Schermerhorn Hall</td>
<td>Arnold Gordon, Ryan Abernathey</td>
<td>3</td>
<td>11/25</td>
</tr>
</tbody>
</table>

EESC GU4947 Plate Tectonics. 3 points.
CC/GS: Partial Fulfillment of Science Requirement
Given in alternate years.

Prerequisites: course in solid earth geology or geophysics; solid background in math and physics
Development of a comprehensive understanding of deformation and evolution of Earth’s surface through cross-disciplinary analysis of the plate-tectonic cycle. Topics include the thermal and chemical evolution of mid-ocean ridges, the deep-ocean basins, subduction zones, continental rifts and collisions, and hot spots; driving forces of plate motion and mantle convection; magmatism and volcanism; and faulting and earthquakes. Emphasizes integration of geophysical, geological and geochemical observations and processes, with a particular focus on observations from the ocean basins.

Fall 2019: EESC GU4947
<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESC 4947</td>
<td>001/55533</td>
<td>T Th 1:10pm - 2:25pm 506 Schermerhorn Hall</td>
<td>James Gabert, Donna Shilling</td>
<td>3</td>
<td>8/20</td>
</tr>
</tbody>
</table>
Spring 2020

EESC UN1011 Earth: Origin, Evolution, Processes, Future. 4 points.
CC/GS: Partial Fulfillment of Science Requirement

What is the nature of our planet and how did it form? This class explores Earth’s internal structure, its dynamical character expressed in plate tectonics and earthquakes, and its climate system. It also explores what Earth’s future may hold. Lecture and lab. Students who wish to take only the lectures should register for UN1411.

Spring 2020: EESC UN1011
Course Number Section/Call Number Times/Location Instructor Points Enrollment
EESC 1011 001/12421 M W 10:10am - 11:25am 603 Schermerhorn Hall Sedelia Rodriguez 4 27/30
EESC 1011 001/12421 M 1:10pm - 4:00pm 555 Ext Schermerhorn Hall Sedelia Rodriguez 4 27/30

EESC UN1030 Oceanography. 3 points.
CC/GS: Partial Fulfillment of Science Requirement
Enrollment limited to 160.

Explore the geology of the sea floor, understand what drives ocean currents and how ocean ecosystems operate. Case studies and discussions centered on ocean-related issues facing society.

Spring 2020: EESC UN1030
Course Number Section/Call Number Times/Location Instructor Points Enrollment
EESC 1030 001/12428 T Th 8:40am - 9:55am 501 Northwest Corner Baerbel Hoenisch 3 150/160

EESC UN1411 Earth: Origin, Evolution, Processes, Future: Lectures. 3 points.
CC/GS: Partial Fulfillment of Science Requirement

What is the nature of our planet and how did it form? This class explores Earth’s internal structure, its dynamical character expressed in plate tectonics and earthquakes, and its climate system. It also explores what Earth’s future may hold.

Spring 2020: EESC UN1141
Course Number Section/Call Number Times/Location Instructor Points Enrollment
EESC 1411 001/12429 M W 10:10am - 11:25am 603 Schermerhorn Hall Sedelia Rodriguez 3 38/40

EESC UN1900 Geological Excursion to the Eastern Sierra, CA. 2 points.
Enrollment limited to 20.

Prerequisites: the instructor’s permission.
Spring break field trip to the Eastern Sierra, CA, restricted to first-years and sophomores from Columbia College/General Studies, Barnard College, and the School of Engineering and Applied Science. Excursion focuses on the geology and environment of Mono Lake and adjacent areas. Discussion sessions ahead of the trip provide the necessary background. Early application advised; deadline: November 18. More details at: http://eesc.columbia.edu/courses/v1900/ (website not up-to-date). Discussion Section Required. Enrollment limit: 20. The instructor’s permission required.

Spring 2020: EESC UN1900
Course Number Section/Call Number Times/Location Instructor Points Enrollment
EESC 1900 001/17792 T 7:30pm - 9:30pm 555 Ext Schermerhorn Hall Stephen Cox, Sidney Hemming

EESC UN2100 Earth’s Environmental Systems: The Climate System. 4.5 points.
Priority given to Columbia and Barnard earth science, environmental science, and environmental biology majors should enrollment limits be reinstated.

Prerequisites: high school algebra. Recommended preparation: high school chemistry and physics; and one semester of college science. Origin and development of the atmosphere and oceans, formation of winds, storms and ocean currents, reasons for changes through geologic time. Recent influence of human activity: the ozone hole, global warming, water pollution. Laboratory exploration of topics through demonstrations, experimentation, computer data analysis, and modeling. Students majoring in Earth and Environmental Sciences should plan to take EESC W2100 before their senior year to avoid conflicts with Senior Seminar.

Fall 2019: EESC UN2100
Course Number Section/Call Number Times/Location Instructor Points Enrollment
EESC 2100 001/55514 T Th 10:10am - 11:25am 603 Schermerhorn Hall Jerry McManus, Adam Sobel, Mingfang Tong, Gisela Winckler 4.5 46/50
EESC 2100 001/55514 T 4:10pm - 5:35pm 555 Schermerhorn Hall Jerry McManus, Adam Sobel, Mingfang Tong, Gisela Winckler 4.5 46/50

Spring 2020: EESC UN2100
Course Number Section/Call Number Times/Location Instructor Points Enrollment
EESC 2100 001/12430 M W 10:10am - 11:25am 603 Schermerhorn Hall Mingfang Tong, Gisela Winckler 4.5 40/50
EESC 2100 001/12430 M W 10:10am - 11:25am 555 Ext Schermerhorn Hall Mingfang Tong, Gisela Winckler 4.5 40/50
EESC UN2200 Earth's Environmental Systems: The Solid Earth System. 4.5 points.
CC/GS: Partial Fulfillment of Science Requirement
Priority given to Columbia and Barnard earth science, environmental science, and environmental biology majors should enrollment limits be necessary.

Prerequisites: high school algebra and chemistry. Recommended preparation: high school physics.
Prerequisites: high school algebra, chemistry, and physics. Exploration of how the solid Earth works, today and in the past, focusing on Earth in the Solar system, continents and oceans, the Earth's history, mountain systems on land and sea, minerals and rocks, weathering and erosion, glaciers and ice sheets, the hydrological cycle and rivers, geochronology, plate tectonics, earthquakes, volcanoes, energy resources. Laboratory exploration of topics through examination of rock samples, experimentation, computer data analysis, field exercises, and modeling. Columbia and Barnard majors should plan to take W2200 before their senior year to avoid conflicts with the Senior Seminar.

EESC UN2300 Earth's Environmental Systems: The Life System. 4.5 points.
CC/GS: Partial Fulfillment of Science Requirement
Priority given to Columbia and Barnard earth science, environmental science, and environmental biology majors should enrollment limits be reinstated.

Prerequisites: high school algebra. Recommended preparation: high school chemistry and physics.
Role of life in biogeochemical cycles, relationship of biodiversity and evolution to the physical Earth, vulnerability of ecosystems to environmental change; causes and effects of extinctions through geologic time (dinosaurs and mammoths) and today. Exploration of topics through laboratories, demonstrations, computer data analysis and modeling. REQUIRED LAB: EESC UN2310. Students should see the Directory of Classes for lab sessions being offered and select one.

Co-meets with EEEB 2002

Spring 2020: EESC UN2200

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESC 2200</td>
<td>001/12434</td>
<td>M W 11:40am - 12:55pm</td>
<td>Paul Olsen, Matthew Palmer, Kevin Griffin</td>
<td>4.5</td>
<td>46/50</td>
</tr>
<tr>
<td>EESC 2300</td>
<td>001/12436</td>
<td>W 4:10pm - 7:00pm</td>
<td>Paul Olsen, Matthew Palmer, Kevin Griffin</td>
<td>0</td>
<td>22/24</td>
</tr>
<tr>
<td>EESC 2310</td>
<td>002/12438</td>
<td>W 4:10pm - 7:00pm</td>
<td>Paul Olsen, Matthew Palmer, Kevin Griffin</td>
<td>0</td>
<td>12/24</td>
</tr>
<tr>
<td>EESC 2310</td>
<td>003/12465</td>
<td>W 4:10pm - 7:00pm</td>
<td>Paul Olsen, Matthew Palmer, Kevin Griffin</td>
<td>0</td>
<td>9/24</td>
</tr>
<tr>
<td>EESC 2310</td>
<td>004/12467</td>
<td>Th 4:10pm - 7:00pm</td>
<td>Paul Olsen, Matthew Palmer, Kevin Griffin</td>
<td>0</td>
<td>19/24</td>
</tr>
<tr>
<td>EESC 2310</td>
<td>005/12468</td>
<td>Th 4:10pm - 7:00pm</td>
<td>Paul Olsen, Matthew Palmer, Kevin Griffin</td>
<td>0</td>
<td>0/24</td>
</tr>
</tbody>
</table>
EESC UN3010 Field Geology. 3 points.
Fee: to be determined.

The centerpiece of this course is a field trip that will take place during Spring Break in Barbados. During the term-time the class will meet before the trip to prepare for it and after the trip to synthesize what was learned and to create a field guide. Subjects to be covered: Plate tectonics / convergent plate margins and accretionary prisms / Barbados geology; ice ages / Milankovitch cycles / sea level; introduction to coral reefs and fossil coral reef geology; Barbados terrestrial ecology; limestone caves / hydrology; dating methods; overview of Barbados history, economy, culture. In order to observe the modern day coral reef (the modern day live analog to the fossil coral reefs) the class will go snorkeling. In order to observe the effects of cave formation and water flow in limestone terrains the class will visit a cave. The class will also participate in an exercise in geological mapping of a series of coral reef terraces.

Priority is given to junior and senior majors and concentrators in the Department of Earth and Environmental Sciences at Columbia College and the School of General Studies, and Barnard Environmental Science majors and minors. Barnard students must receive permission from the Barnard Environmental Science department chair in order to receive the subsidy. All others require the instructor’s permission. Interested sophomores planning to major or concentrate in Earth Sciences or Environmental Sciences are encouraged to contact the instructor. By necessity (number of van seats) the course is limited to 20 or 21 students.

Spring 2020: EESC UN3010

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESC 3010</td>
<td>001/15067</td>
<td>T 7:30pm - 9:30pm</td>
<td>Steven Goldstein</td>
<td>3</td>
<td>23/50</td>
</tr>
</tbody>
</table>

EESC UN3201 Solid Earth Dynamics. 3 points.

Prerequisites: any 1000-level or 2000-level EESC course; MATH UN1101 Calculus I and PHYS UN1201 General Physics I or their equivalents. Concurrent enrollment in PHYS UN1201 is acceptable with the instructor’s permission.

Properties and processes affecting the evolution and behavior of the solid Earth. This course will focus on the geophysical processes that build mountains and ocean basins, drive plate tectonics, and otherwise lead to a dynamic planet. Topics include heat flow and mantle circulation, earthquakes and seismic waves, gravity, Earth’s magnetic field, and flow of glaciers and ice sheets.

Spring 2020: EESC UN3201

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESC 3201</td>
<td>001/12469</td>
<td>T Th 8:40am - 9:55am</td>
<td>Meredith Nettles</td>
<td>3</td>
<td>11/40</td>
</tr>
</tbody>
</table>

EESC UN3901 Environmental Science Senior Seminar. 3 points.

Prerequisites: EESC BC3800 or EESC BC3801 and a good grounding in basic sciences. Guided, independent, in-depth research culminating in the senior thesis in the spring. Includes discussion about scientific presentations and posters, data analysis, library research methods and scientific writing. Students review work in progress and share results through oral reports. Weekly seminar to review work in progress and share results through oral and written reports.

Fall 2019: EESC UN3901

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESC 3901</td>
<td>001/55556</td>
<td>Th 4:10pm - 6:00pm</td>
<td>Martin Stute, Jacqueline Austermann, Roisin Commane</td>
<td>3</td>
<td>12/50</td>
</tr>
</tbody>
</table>

Spring 2020: EESC UN3901

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESC 3901</td>
<td>001/19645</td>
<td>Th 4:10pm - 6:00pm</td>
<td>Martin Stute</td>
<td>3</td>
<td>12/50</td>
</tr>
</tbody>
</table>

EESC GU4009 Chemical Geology. 3 points.

Given in alternate years.

Prerequisites: physical chemistry or the instructor's permission. In this course we will look at geochemical problems from a thermodynamic and kinetics standpoint. We will first review mathematical and theoretical thermodynamic concept before applying them to problems of geological interest. We will see how thermodynamic equations can be used to derive the crystallization depth and temperature of metamorphic and magmatic mineral, describe the solubility of volatile species in magmas, predict the composition of volcanic gas mixtures, model the nucleation and growth of crystals and bubbles in a melt and determine the chemical interaction between water and rock at the surface. We will then look at kinetic problems such as the diffusion of heat and matter through crystals and melts and how these can allow us to get timing constraints on geological processes.

Spring 2020: EESC GU4009

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESC 4009</td>
<td>001/16421</td>
<td>Th 10:10am - 11:25am</td>
<td>Yes Moussallam</td>
<td>3</td>
<td>6/25</td>
</tr>
</tbody>
</table>

EESC GU4210 Geophysical Fluid Dynamics. 3 points.

Required course for M.A./Ph.D. candidates focusing in physical oceanography and atmospheric sciences. Elective for undergraduate majors in the Department of Earth and Environmental Sciences.

Prerequisites: APMA E3101, APMA E3201 or equivalents and APPH E4200 or equivalent or the instructor’s permission. Fundamental concepts in the dynamics of rotating stratified flows. Geostrophic and hydrostatic balances, potential vorticity, f and beta plane approximations, gravity and Rossby waves, geostrophic adjustment and quasi-geostrophy, baroclinic and barotropic instabilities.

Spring 2020: EESC GU4210

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>EESC 4210</td>
<td>001/12472</td>
<td>Th 4:10pm - 6:40pm</td>
<td>Lorenzo Polvani</td>
<td>3</td>
<td>16/35</td>
</tr>
</tbody>
</table>
EESC GU4220 Glaciology. 3 points.
Prerequisites: At least a year of calculus and physics; any 1000-level or 2000-level EESC course. Recommended: EESC2100 (Climate System), EESC2200 (Solid Earth), EESC3201 (Solid Earth Dynamics). Experience using MATLAB.
This course examines processes controlling how glaciers and ice sheets grow, retreat, modify their landscape and interact with the rest of the Earth system. We focus on what controls surface mass balance, the transformation from snow to ice, ice deformation, basal sliding, the temperature and age of ice, the flow of water through ice sheets and glaciers, and the two-way interactions between ice and the oceans, atmosphere and solid earth. Weekly lectures are accompanied by practical computer sessions that equip students with key numerical and data analysis skills used in research of glacial processes.

EESC GU4235 Sea level change. 3 points.
Prerequisites: At least a year of calculus and physics; any 1000-level or 2000-level EESC course; basic programming experience (e.g. EESC3400 - Introduction to Computational Earth Science). Recommended: EESC2100 (Climate System), EESC2200 (Solid Earth), EESC3201 (Solid Earth Dynamics).
The course aims to explore sea level changes that take place over a wide variety of timescales and are the result of multiple solid Earth and climatic processes. The course will link a series of solid Earth processes such as mantle convection, viscoelastic deformation, and plate tectonics to the paleoclimate record and investigate how these processes contribute to our understanding of past and present changes in sea level and climate. The course will step chronologically through time starting with long term sea level changes over the Phaner zoic, followed by Plio-Pleistocene ice age sea level variations and lastly modern and future sea level change. This is a cross-disciplinary course, which is aimed at students with interests in geophysics, cryosphere evolution, ocean dynamics, sedimentology, paleography, and past and present climate

Spring 2020: EESC GU4235
Course Number Section/Call Number Times/Location Instructor Points Enrollment
EESC 4235 001/12474 T Th 11:40am - 12:55pm 603 Schermerhorn Hall Jacqueline Austermann 3 9/20

EESC GU4300 The Earth's Deep Interior. 3 points.
Prerequisites: Vector calculus, differential equations, one year of college physics (mechanics, electromagnetism, waves)
An overview of the geophysical study of the Earth, drawing upon geodesy, gravity, seismology, thermal studies, geomagnetism, materials science, and some geochemistry. Covers the principal techniques by which discoveries have been made, and are made, in deep Earth structure. Describes fundamental properties and features of the crust, mantle, and core.

Spring 2020: EESC GU4300
Course Number Section/Call Number Times/Location Instructor Points Enrollment
EESC 4300 001/12475 Th 1:10pm - 3:40pm 506 Schermerhorn Hall Goran Ekstrom 3 3/30

EESC GU4885 The Chemistry of Continental Waters. 3 points.
Given in alternate years.
Prerequisites: Recommended preparation: a solid background in basic chemistry.
Introduction to geochemical cycles involving the atmosphere, land, and biosphere; chemistry of precipitation, weathering reactions, rivers, lakes, estuaries, and groundwaters; students are introduced to the use of major and minor ions as tracers of chemical reactions and biological processes that regulate the chemical composition of continental waters.

Spring 2020: EESC GU4885
Course Number Section/Call Number Times/Location Instructor Points Enrollment
EESC 4885 001/12476 T Th 2:40pm - 3:55pm 417 Schermerhorn Hall Robert Anderson 3 6/40

EESC GU4920 Paleoceanography. 3 points.
CC/GS: Partial Fulfillment of Science Requirement
Given in alternate years.
Prerequisites:Compliments GU4937 Cenozoic Paleoceanography, intended as part of a sequence with GU4330 Terrestrial Paleoclimate. For undergrads, UN2100 Earth System: Climate or equivalent, or permission of instructor
The course examines the ocean's response to external climatic forcing such as solar luminosity and changes in the Earth's orbit, and to internal influences such as atmospheric composition, using deep-sea sediments, corals, ice cores and other paleoceanographic archives. A rigorous analysis of the assumptions underlying the use of climate proxies and their interpretations will be presented. Particular emphasis will be placed on amplifiers of climate change during the alternating ice ages and interglacial intervals of the last few million years, such as natural variations in atmospheric "greenhouse gases" and changes in deep water formation rates, as well as mechanisms of rapid climate change during the late Pleistocene. The influence of changes in the Earth's radiation distribution and boundary conditions on the global ocean circulation, Asian monsoon system and El Nino/Southern Oscillation frequency and intensity, as well as interactions among these systems will be examined using proxy data and models. This course complements W4937 Cenozoic Paleoceanography and is intended as part of a sequence with W4330 Terrestrial Paleoclimate for students with interests in Paleoclimate.

Spring 2020: EESC GU4920
Course Number Section/Call Number Times/Location Instructor Points Enrollment
EESC 4920 001/12477 T Th 10:10am - 11:25am 417 Schermerhorn Hall Jerry McManus 3 19/30
EESC GU4924 Introduction to Atmospheric Chemistry. 3 points.
CC/GS: Partial Fulfillment of Science Requirement

Prerequisites: Physics UN1201, Chem UN1403, & Math UN1201 (Calc III), or their equivalents. Recommended: EESC UN2100 or EESC GU4008.
Physical and chemical processes determining atmospheric composition and the implications for climate and regional air pollution. Atmospheric evolution and human influence; basics of greenhouse effect, photolysis, reaction kinetics, atmospheric transport of trace species; stratospheric ozone chemistry; tropospheric hydrocarbon chemistry; oxidizing power; nitrogen, oxygen, sulfur cycles; chemistry-climate-biosphere interactions; aerosols, smog, acid rain.

Spring 2020: EESC GU4924
Course Number Section/Call Number Times/Location Instructor Points Enrollment
EESC 4924 001/12478 T Th 11:40am - 12:55pm 417 Schermerhorn Hall

EESC GU4929 Mixing and Dispersion in the Ocean. 3 points.
CC/GS: Partial Fulfillment of Science Requirement
Given in alternate years.

Prerequisites: Recommended preparation: some background in fluids, as provided by courses like EESC GU4925 or APPH E4200, or the instructor’s permission.
Mixing and dispersion in the ocean is of fundamental importance in many oceanographic problems, including climate modeling, paleo and present-day circulation studies, pollutant dispersion, biogeography, etc. The main goal of this course is to provide in-depth understanding (rather than mathematical derivations) of the causes and consequences of mixing in the ocean, and of the properties of dispersion. After introducing the concepts of diffusion and turbulence, instruments and techniques for quantifying mixing and dispersion in the ocean are reviewed and compared. Next, the instabilities and processes giving rise to turbulence in the ocean are discussed. The course concludes with a series of lectures on mixing and dispersion in specific oceanographic settings, including boundary layers, shallow seas, continental shelves, sea straits, seamounts, and mid-ocean ridge flanks.

Spring 2020: EESC GU4929
Course Number Section/Call Number Times/Location Instructor Points Enrollment
EESC 4929 001/12479 T Th 8:40am - 9:55am 417 Schermerhorn Hall

EESC GU4930 Earth’s Oceans and Atmosphere. 3 points.
Prerequisites: Recommended preparation: a good background in the physical sciences.
Physical properties of water and air. Overview of the stratification and circulation of Earth’s ocean and atmosphere and their governing processes; ocean-atmosphere interaction; resultant climate system; natural and anthropogenic forced climate change.

Spring 2020: EESC GU4930
Course Number Section/Call Number Times/Location Instructor Points Enrollment
EESC 4930 001/12480 T Th 1:10pm - 2:25pm 417 Schermerhorn Hall

Of Related Interest

Environmental Science (Barnard)
EESC BC1001 Environmental Science I
EESC BC1011 Environmental Science I Lab
EESC BC3014 Field Methods in Environmental Science

EESC BC3016 Environmental Measurements
EESC BC3017 Environmental Data Analysis
EESC BC3025 Hydrology
EESC BC3033 Waste Management
EESC BC3050 Big Data with Python: Python for Environmental Analysis and Visualisation
EESC BC3200 Ecotoxicology
EESC BC3300 Workshop in Sustainable Development

Physics
PHYS UN1018 Weapons of Mass Destruction

Generally Alternate Year Courses

EESC UN1001 Dinosaurs and the History of Life: Lectures and Lab
EESC UN1201 Environmental Risks and Disasters
EESC UN1401 Dinosaurs and the History of Life: Lectures
EESC UN3015 The Earth’s Carbon Cycle
EESC GU4009 Chemical Geology
EESC GU4040 Climate Thermodynamics and Energy Transfer
EESC GU4085 Geodynamics
EESC GU4113 Introduction to Mineralogy
EESC GU4330 Introduction to Terrestrial Paleoclimate
EESC GU4223 Sedimentary Geology
EESC GU4300 The Earth’s Deep Interior
EESC GU4630 Air-sea interaction
EESC GU4701 Introduction to Igneous Petrology
EESC GU4835 Wetlands and Climate Change
EESC GU4885 The Chemistry of Continental Waters
EESC GU4887 Isotope Geology I
EESC GU4888 Stable Isotope Geochemistry
EESC GU4920 Paleoenography
EESC GU4926 Principles of Chemical Oceanography
EESC GU4937 Cenozoic Paleoenography
EESC GU4929 Mixing and Dispersion in the Ocean
EESC GU4949 Introduction to Seismology
EESC GR6111 Modern analytical methods in geochemistry
EESC GR6701 Igneous and metamorphic processes during the creation and evolution of the tectonic plates
EESC GR6810 The Carbon Cycle
EESC GR6901 Research Computing for the Earth Sciences
EESC GR6909 Advanced Time Series Analysis
EESC GR6920 Dynamics of Climate
EESC GR6921 Atmospheric Dynamics
EESC GR6922 Atmospheric Radiation
EESC GR6928 Tropical Meteorology
EESC GR6949 Advanced Seismology
EESC GR6930 Ocean Dynamics
EESC GR9500 SEM-PLANT PHYSIOLOGY & EC