BIOPHYSICS

Departmental Office: 600 Fairchild, 212-854-4581; mes2314@columbia.edu; biology@columbia.edu

Director of Undergraduate Studies, Undergraduate Programs and Laboratories:
Prof. Deborah Mowshowitz, 744D Mudd; 212-854-4497; dbm2@columbia.edu

Biology Major and Concentration Advisers:
For a list of current biology, biochemistry, biophysics, and neuroscience and behavior advisers, please visit http://biology.columbia.edu/programs/advisors (http://biology.columbia.edu/programs/advisors/)

A-H: Prof. Daniel Kalderon, 1013 Fairchild; ddk1@columbia.edu
I-P: Prof. Alice Heicklen, 744B Mudd; ah2289@columbia.edu
Q-Z: Prof. Harmen Bussemaker, 607E Fairchild; hjb2004@columbia.edu
Backup Advisor: Prof. Deborah Mowshowitz, 744D Mudd; 212-854-4497; dbm2@columbia.edu

Biochemistry Advisers:
Biology: Prof. Brent Stockwell, 1208 Northwest Corner Building; 212-854-2948; stockwell@biology.columbia.edu
Chemistry: Prof. Virginia Cornish, 1209 Northwest Corner Building; 212-854-5209; vc114@columbia.edu

Biophysics Adviser: Prof. Ozgur Sahin, 908 Northwest Corner Building; os2246@columbia.edu

Neuroscience and Behavior Advisers:
Biology: Prof. Jian Yang, 917A Fairchild; 212-854-6161; jy160@columbia.edu
or Prof. Deborah Mowshowitz, 744D Mudd; 212-854-4497; dbm2@columbia.edu

Psychology:
Professor Caroline Marvin, 317 Schermerhorn Ext, 854-0166, cbm2118@columbia.edu

On-Line Resources:
Checklist of major requirements: http://biology.columbia.edu/programs/major-requirements/
Additional course information: http://biology.columbia.edu/courses

For the first term of their introductory biology sequence, students may take either BIOL UN2005 Introductory Biology I: Biochemistry, Genetics & Molecular Biology, which has a prerequisite of chemistry, or EEBB UN2001 Environmental Biology I: Elements to Organisms, which does not require chemistry. EEBB UN2001 Environmental Biology I: Elements to Organisms may be taken in the first year.

BIOL UN2005 Introductory Biology I: Biochemistry, Genetics & Molecular Biology should be taken later, after general chemistry. For more details, see Introductory Courses under Requirements—Major in Biology. All students interested in biology are encouraged to take BIOL UN1908 First-Year Seminar in Modern Biology in the fall semester of their first year.

Nonscience majors who wish to take a biology course to fulfill the science requirement are encouraged to take BIOL UN1130 Genes and Development. They may also take, with the instructor’s permission, BIOL UN3208 Introduction to Evolutionary Biology or EEBB UN2001 Environmental Biology I: Elements to Organisms.

Interested students should consult listings in other departments for courses related to biology. For courses in environmental studies, see listings for Earth and environmental sciences or for ecology, evolution, and environmental biology. For courses in human evolution, see listings for anthropology or for ecology, evolution, and environmental biology. For courses in the history of evolution, see listings for history and for philosophy of science. For a list of courses in computational biology and genomics, visit http://systemsbiology.columbia.edu/courses (http://systemsbiology.columbia.edu/courses/).

Advanced Placement
Transfer Credit
Transfer credits granted toward the degree are not automatically counted toward the major. The department determines which transfer credits can be counted toward the major. For most majors, at least four biology or biochemistry courses and at least 18 credits of the total (biology, biochemistry, math, physics, and chemistry) must be taken at Columbia. Barnard courses may not be substituted for the required Columbia courses without advance permission from the adviser. For neuroscience and behavior, one of the five biology course and one of the psychology courses may be transferred. Students who wish to count a course from outside Columbia toward their major must receive written approval from their adviser or the director of undergraduate studies. Students must supply a syllabus and/or course description to receive approval.

Advising
Neuroscience and Behavior Advisers:
Biology: Prof. Jian Yang, 917A Fairchild; 854-6161; jy160@columbia.edu
or Prof. Deborah Mowshowitz, 744D Mudd; 854-4497; dbm2@columbia.edu
Psychology:
Professor Caroline Marvin, 317 Schermerhorn Ext, 854-0166, cbm2118@columbia.edu

Summer Undergraduate Research Fellowship (SURF) Program
First-year students, sophomores, and juniors are eligible for the department’s paid internship program (SURF). This program is competitive; the department cannot assure every eligible student a place in any given summer.

Students apply to the program early in the spring term. A faculty committee headed by Dr. Alice Heicklen then matches selected students...
to appropriate labs. The deadline for SURF applications is at the beginning of the spring semester.

SURF students must submit a report on their work at the end of the summer session and participate in the following year’s annual Undergraduate Research Symposium. Although it does not carry any academic credit, SURF can be used toward the lab requirement for majors and toward graduation with honors. For detailed information on all summer research programs and how to apply, please visit the SURF website (http://www.columbia.edu/cu/biology/ug/surf/).

Current detailed descriptions of the SURF program and the application procedure are available at SURF’s website, http://www.columbia.edu/cu/biology/ug/surf/. For more information on the Amgen Scholarship Program, please visit http://www.columbia.edu/cu/biology/ug/amgen/. Applications to all of these programs are through SURF.

Departmental Honors
Students must apply for departmental honors. Applications are due no later than one day after spring break of their senior year. For details, please visit the departmental website at http://biology.columbia.edu/programs/honors-biological-sciences/ (http://biology.columbia.edu/programs/honors-biological-sciences/)

Professors
Peter Andolfatto
J. Chloë Bulinski
Harmen Bussemaker
Martin Chalfie
Lawrence Chasin
Julio Fernandez
Stuart Firestein
Joachim Frank
Iva Greenwald
Tulle Hazelrigg
Oliver Hobert
John Hunt
Daniel Kalderon
Darcy Kelley
Laura Landweber
James Manley
Robert Pollack
Carol Prives
Ronald Prywes
Molly Przeworski
Michael Sheetz
Brent Stockwell
Simon Tavare
Saeed Tavazoie
Liang Tong
Alexander Tzagoloff
Jian Yang
Rafael Yuste

Associate Professors
Lars Dietrich
Songtao Jia
Ozgur Sahin
Guy Sella

Assistant Professors
Erin Barnhart
Laura Duvall
Jellert Gaublomme
Marko Jovanovic
Raju Tomer
Maria Tosches

Lecturers
Claire Elise Hazen
Alice Heicklen
Mary Ann Price
Lili Yamasaki

Adjunct Faculty
Lewis Brown
Ronald Guido
Jay Hammel
Danny Nam Ho
John Loike
Alan Morrison
Deborah Mowshowitz
Solomon Mowshowitz
Dana Pe’er
Vincent Racaniello
David Sable

Guidelines for all Biological Sciences Majors, Concentrators, and Interdepartmental Majors
Returning students should check the departmental website for any last-minute changes and/or additional information. See especially undergraduate updates and list of department courses. All major and concentration requirements are detailed on the website and links provided below.

Exceptions to Requirements
Students must get written permission in advance for any exceptions to the requirements listed below. For the exceptions to be applied toward graduation, the student must notify the biology department in one of the following two ways:

1. The student can file a completed paper planning form, signed by a faculty adviser, in the biology department office at 600 Fairchild;
2. The faculty member approving the exception can send an e-mail explaining the exceptions to mes2314@columbia.edu.

Grade Requirements for the Major
A grade of C- or higher must be earned and revealed on your transcript for any course – including the first – to be counted toward the major or concentration requirements. The grade of P is not acceptable. A course that was taken Pass/D/Fail may be counted if and only if the P is uncovered by the Registrar’s deadline.

Courses
Courses with the subject code HPSC or SCNC do not count toward the majors or concentrations.
Major in Biology

General Information
The requirements for the biology major include courses in biology, chemistry, physics, and mathematics.

The required biology courses are one year of introductory biology, two core courses in biology or biochemistry, two 3-point electives in biology or biochemistry, and an appropriate lab experience. See below for details.

The required courses outside the biology department are chemistry through organic (plus labs), one year of college-level physics (plus lab), and the completion of one year of college-level mathematics (usually calculus).

Alternative sequences to the above may be arranged in special circumstances, but only with the permission of the director of undergraduate studies or a departmental adviser obtained in advance; for example, certain courses listed in the Summer Term Bulletin, the School of General Studies Bulletin, and the Barnard College Bulletin may be applied toward the major. In addition, selected courses at the Columbia-Presbyterian Medical Center are open to advanced undergraduates. Credit toward the major for courses not listed in the Columbia College Bulletin must be discussed in advance with the director of undergraduate studies or a departmental adviser. Students are responsible for notifying the department of all exceptions either in writing or by e-mail as explained above.

Alternative programs must be arranged in advance with the director of undergraduate studies. Students planning graduate work in biology should keep in mind that physical chemistry and statistics are important for many graduate programs.

Introductory Courses
The usual one-year introductory biology sequence is BIOL UN2005 Introductory Biology I: Biochemistry, Genetics & Molecular Biology-BIOL UN2006 Introductory Biology II: Cell Biology, Development & Physiology, taken in the sophomore year, or EEEB UN2001 Environmental Biology I: Elements to Organisms-BIOL UN2006 Introductory Biology II: Cell Biology, Development & Physiology, which may be taken in the first year.

Other sequences require permission in advance from the director of undergraduate studies or departmental advisers. Students with a strong background in chemistry or molecular biology may take BIOL UN2005 Introductory Biology I: Biochemistry, Genetics & Molecular Biology-BIOL UN2006 Introductory Biology II: Cell Biology, Development & Physiology in their first year; the permission of one of the instructors is required.

Premedical students usually take BIOL UN2005 Introductory Biology I: Biochemistry, Genetics & Molecular Biology-BIOL UN2006 Introductory Biology II: Cell Biology, Development & Physiology after a year of general chemistry; premed students interested in the environmental sciences may take EEEB UN2001 Environmental Biology I: Elements to Organisms followed by BIOL UN2006 Introductory Biology II: Cell Biology, Development & Physiology.

Students with advanced placement in biology are expected but not required to take EEEB UN2001 Environmental Biology I: Elements to Organisms or BIOL UN2005 Introductory Biology I: Biochemistry, Genetics & Molecular Biology as their initial biology course, because BIOL UN2005 Introductory Biology I: Biochemistry, Genetics & Molecular Biology-BIOL UN2006 Introductory Biology II: Cell Biology, Development & Physiology is taught at a level of detail and depth not found in most advanced placement courses.

Students who wish to skip BIOL UN2005 Introductory Biology I: Biochemistry, Genetics & Molecular Biology and start with a higher-level biology course may do so, but they must obtain permission in advance from the director of undergraduate studies. For additional information, see FAQs for first-year students at http://www.columbia.edu/cu/biology/ug/advice/faqs/firstyr.html.

Core Courses
Two out of the following five departmental core courses are required:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL UN3022</td>
<td>Developmental Biology</td>
</tr>
<tr>
<td>BIOL UN3031</td>
<td>Genetics</td>
</tr>
<tr>
<td>BIOL UN3041</td>
<td>Cell Biology</td>
</tr>
<tr>
<td>BIOC GU4501</td>
<td>Biochemistry: Structure and Metabolism</td>
</tr>
<tr>
<td>or BIOC UN3300</td>
<td>Biochemistry</td>
</tr>
<tr>
<td>BIOC UN3512</td>
<td>Molecular Biology</td>
</tr>
</tbody>
</table>

Laboratory Courses
A laboratory experience in biology is required. It may be fulfilled by completing any one of the following options:

Option 1:
- Select one of the following 5-point laboratory courses:
 - BIOL UN3050 Project Laboratory in Protein Biochemistry
 - BIOL UN3052 Project Laboratory in Molecular Genetics
 - BIOL UN3058 Project Laboratory in Microbiology

Option 2:
- BIOL UN2501 Contemporary Biology Laboratory
 - Select an additional 3-point lab such as BIOL UN3040 or a Barnard lab.

Option 3:
- Two terms of BIOL UN3500 taken for a letter grade, including the submission of a satisfactory research report at the end of each semester

Option 4:
- Completion of all the requirements for one session of the Summer Undergraduate Research Fellowship (SURF). An additional semester of BIOL UN3500 in the same research lab is recommended but not required. Summer lab work under other auspices may not be substituted for the SURF Program.

The laboratory fee ($150) partially covers the cost of nonreturnable items. This fee is charged for all lab courses, including BIOL UN3500 Independent Biological Research.

Upper-Level Elective Courses
Select two additional courses, carrying at least 3 points each, from any of the 3000- or 4000- level lecture courses. BIOL UN3500 Independent Biological Research cannot be used as one of the courses to satisfy the upper-level elective course requirement.

Chemistry
All majors must take chemistry through organic including labs. One of the following three groups of chemistry courses is required:
Option 1:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM UN1403</td>
<td>General Chemistry I (Lecture)</td>
<td>and General Chemistry II (Lecture)</td>
</tr>
<tr>
<td>- CHEM UN1404</td>
<td>General Chemistry Laboratory</td>
<td>and General Chemistry Laboratory Lecture</td>
</tr>
<tr>
<td>CHEM UN1500</td>
<td>Organic Chemistry I (Lecture)</td>
<td>and Organic Chemistry II (Lecture)</td>
</tr>
<tr>
<td>- CHEM UN1501</td>
<td>Organic Chemistry Laboratory</td>
<td>I (Techniques)</td>
</tr>
<tr>
<td>CHEM UN2493</td>
<td>Organic Chemistry Laboratory I</td>
<td>and Organic Chemistry Laboratory II (Synthesis)</td>
</tr>
<tr>
<td>- CHEM UN2494</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Option 2:

For students who qualify for intensive chemistry

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM UN1604</td>
<td>Intensive General Chemistry (Lecture)</td>
</tr>
<tr>
<td>CHEM UN1507</td>
<td>Intensive General Chemistry Laboratory</td>
</tr>
<tr>
<td>CHEM UN2444</td>
<td>Organic Chemistry II (Lecture)</td>
</tr>
<tr>
<td>- CHEM UN2443</td>
<td>Organic Chemistry I (Lecture)</td>
</tr>
<tr>
<td>CHEM UN2495</td>
<td>Organic Chem. Laboratory I</td>
</tr>
<tr>
<td>- CHEM UN2496</td>
<td>and Organic Chem. Laboratory II</td>
</tr>
</tbody>
</table>

Option 3:

For students who qualify for first year organic chemistry

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM UN1507</td>
<td>Intensive General Chemistry Laboratory</td>
</tr>
<tr>
<td>CHEM UN2045</td>
<td>Intensive Organic Chemistry I (Lecture)</td>
</tr>
<tr>
<td>- CHEM UN2046</td>
<td>and Intensive Organic Chemistry II (Lecture)</td>
</tr>
<tr>
<td>CHEM UN2495</td>
<td>Organic Chem. Laboratory I</td>
</tr>
<tr>
<td>- CHEM UN2496</td>
<td>and Organic Chem. Laboratory II</td>
</tr>
<tr>
<td>or CHEM UN2545</td>
<td>Intensive Organic Chemistry Laboratory</td>
</tr>
</tbody>
</table>

Physics

Students must take two terms of physics including the accompanying labs. The usual choices are PHYS UN1201-PHYS UN1202 General Physics II and PHYS UN1291-PHYS UN1292 General Physics Laboratory II. Higher-level physics sequences are also acceptable. The 7400-level sequence is recommended for students who plan to take three terms of physics.

Mathematics

Two semesters of calculus or honors mathematics are required. Students may substitute one semester of statistics for one semester of calculus with an advisor’s permission. For students with AP credit, completion of MATH UN1102 Calculus II, MATH UN1201 Calculus III, or MATH UN1207 Honors Mathematics A is sufficient. However, students with AP credit are encouraged to take additional courses in mathematics or statistics at Columbia.

For more details on the biology major requirements, visit http://biology.columbia.edu/pages/biology-major-requirements (http://biology.columbia.edu/pages/biology-major-requirements/).

Major in Biochemistry

The required basic courses for the biochemistry major are chemistry through organic, including laboratory, and one year each of physical chemistry, physics, calculus, biology, and biochemistry/molecular biology.

The required additional courses are three lecture courses chosen from mathematics, chemistry, and biology, and two upper-level laboratory courses.

Major in Biophysics

The requirements for the biophysics major are as follows:

One year of introductory biology:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL UN2005</td>
<td>Introductory Biology: Biochemistry, Genetics & Molecular Biology</td>
</tr>
<tr>
<td>- BIOL UN2006</td>
<td>and Introductory Biology II: Cell Biology, Development & Physiology</td>
</tr>
</tbody>
</table>

Select at least one of the following laboratory courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL UN3050</td>
<td>Project Laboratory In Protein Biochemistry</td>
</tr>
<tr>
<td>BIOL UN3052</td>
<td>Project Laboratory In Molecular Genetics</td>
</tr>
<tr>
<td>BIOL UN3058</td>
<td>Project Laboratory In Microbiology</td>
</tr>
<tr>
<td>BIOL UN3500</td>
<td>Independent Biological Research</td>
</tr>
</tbody>
</table>

One course in biochemistry or molecular biology:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCHM GU4501</td>
<td>BIOCHEM I-STRUCTURE/METABOLISM</td>
</tr>
<tr>
<td>or BIOL UN3512</td>
<td>Molecular Biology</td>
</tr>
<tr>
<td>or BIOL UN3300</td>
<td>Biochemistry</td>
</tr>
</tbody>
</table>

Select one of the following options:

Option 1 - Genetics:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL UN3031</td>
<td>Genetics</td>
</tr>
</tbody>
</table>

Option 2 - Neurobiology:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL UN3004</td>
<td>Neurobiology I: Cellular and Molecular Neurobiology</td>
</tr>
<tr>
<td>or BIOL UN3005</td>
<td>Neurobiology II: Development & Systems</td>
</tr>
</tbody>
</table>

Option 3 - Developmental Biology:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL UN3022</td>
<td>Developmental Biology</td>
</tr>
</tbody>
</table>

Select one of the following sequences to be completed at the end of sophomore year:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS UN1401</td>
<td>Introduction To Mechanics and Thermodynamics</td>
</tr>
<tr>
<td>- PHYS UN1402</td>
<td>and Introduction To Electricity, Magnetism, and Optics</td>
</tr>
<tr>
<td>- PHYS UN1403</td>
<td>and Introduction To Classical and Quantum Waves</td>
</tr>
<tr>
<td>- PHYS UN1494</td>
<td>and Introduction To Experimental Physics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS UN1601</td>
<td>Physics, I: Mechanics and Relativity</td>
</tr>
<tr>
<td>- PHYS UN1602</td>
<td>and Physics, II: Thermodynamics,</td>
</tr>
<tr>
<td>- PHYS UN2601</td>
<td>Electricity, and Magnetism</td>
</tr>
<tr>
<td>- PHYS UN2699</td>
<td>and Physics, III: Classical and Quantum Waves</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS UN2801</td>
<td>Accelerated Physics I</td>
</tr>
<tr>
<td>- PHYS UN2802</td>
<td>and Accelerated Physics II</td>
</tr>
<tr>
<td>- PHYS UN3081</td>
<td>and Intermediate Laboratory Work</td>
</tr>
</tbody>
</table>

Select any two physics courses at the 3000-level or above, chosen in consultation with the adviser.

Calculus through MATH UN1202 or MATH UN1208

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH UN3027</td>
<td>Ordinary Differential Equations</td>
</tr>
</tbody>
</table>

Chemistry through organic including labs; see biology major for options

Select one additional course at the 3000- or 4000-level, including BIOL GU4002, BIOL GU4323, and BIOL GU4324, in either physics or biology.
Major in Neuroscience and Behavior

In addition to one year of general chemistry, ten courses are required to complete the major in neuroscience and behavior—five in biology and five in psychology.

BIOLOGY COURSES

One year of introductory biology.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL UN2005</td>
<td>Introductory Biology I: Biochemistry, Genetics & Molecular Biology</td>
</tr>
<tr>
<td>BIOL UN2006</td>
<td>Introductory Biology II: Cell Biology, Development & Physiology</td>
</tr>
</tbody>
</table>

One year of Neurobiology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL UN3004</td>
<td>Neurobiology I: Cellular and Molecular Neurobiology</td>
</tr>
<tr>
<td>BIOL UN3005</td>
<td>Neurobiology II: Development & Systems</td>
</tr>
</tbody>
</table>

One additional 3000 or 4000 level biology lecture course from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL UN3006</td>
<td>Physiology</td>
</tr>
<tr>
<td>BIOL UN3022</td>
<td>Developmental Biology</td>
</tr>
<tr>
<td>BIOL UN3025</td>
<td>Neurogenetics</td>
</tr>
<tr>
<td>BIOL UN3031</td>
<td>Genetics</td>
</tr>
<tr>
<td>BIOL UN3079</td>
<td>Molecular Biology of Cancer</td>
</tr>
<tr>
<td>BIOL UN3041</td>
<td>Cell Biology</td>
</tr>
<tr>
<td>BIOL UN3073</td>
<td>Cellular and Molecular Immunology</td>
</tr>
<tr>
<td>BIOL UN3193</td>
<td>Stem Cell Biology and Applications</td>
</tr>
<tr>
<td>BIOL UN3300</td>
<td>Biochemistry</td>
</tr>
<tr>
<td>BIOL UN3501</td>
<td>Biochemistry: Structure and Metabolism</td>
</tr>
<tr>
<td>BIOL UN3310</td>
<td>Virology</td>
</tr>
<tr>
<td>BIOL UN3404</td>
<td>Seminar on the Global Threat of Antimicrobial Resistance</td>
</tr>
<tr>
<td>BIOL UN3512</td>
<td>Molecular Biology</td>
</tr>
<tr>
<td>BIOL GU4008</td>
<td>The Cellular Physiology of Disease</td>
</tr>
<tr>
<td>BIOL GU4034</td>
<td>Biotechnology</td>
</tr>
<tr>
<td>BIOL GU4082</td>
<td>Theoretical Foundations and Applications of Biophysical Methods</td>
</tr>
<tr>
<td>BIOL GU4300</td>
<td>Drugs and Disease</td>
</tr>
<tr>
<td>BIOL GU4510</td>
<td>Genomics of Gene Regulation</td>
</tr>
<tr>
<td>BIOL GU4560</td>
<td>Evolution in the age of genomics</td>
</tr>
<tr>
<td>BIOL GU4035</td>
<td>Seminar in Epigenetics</td>
</tr>
<tr>
<td>BIOL GU4070</td>
<td>The Biology and Physics of Single Molecules</td>
</tr>
<tr>
<td>BIOL GU4075</td>
<td>Biology at Physical Extremes</td>
</tr>
<tr>
<td>BIOL GU4080</td>
<td>The Ancient and Modern RNA Worlds</td>
</tr>
<tr>
<td>BIOL GU4250</td>
<td>Proteomics Laboratory</td>
</tr>
<tr>
<td>BIOL GU4290</td>
<td>Biological Microscopy</td>
</tr>
<tr>
<td>BIOL GU4305</td>
<td>Seminar in Biotechnology</td>
</tr>
<tr>
<td>BIOC UN3300</td>
<td>Biochemistry</td>
</tr>
<tr>
<td>BIOC UN3501</td>
<td>Biochemistry: Structure and Metabolism</td>
</tr>
</tbody>
</table>

PSYCHOLOGY COURSES

One lab or statistics course from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC S2210Q</td>
<td>Cognition: Basic Processes</td>
</tr>
<tr>
<td>or PSYC UN1420</td>
<td>RESEARCH METHODS - HUMAN BEHAVIOR</td>
</tr>
<tr>
<td>or PSYC UN1450</td>
<td>Experimental Psychology: Social Cognition and Emotion</td>
</tr>
<tr>
<td>or PSYC UN1490</td>
<td>RESEARCH METHODS - COGNITION/DECISION MAKING</td>
</tr>
<tr>
<td>or PSYC UN1610</td>
<td>Introductory Statistics for Behavioral Scientists</td>
</tr>
<tr>
<td>or PSYC UN1660</td>
<td>Advanced Statistical Inference</td>
</tr>
<tr>
<td>or STAT UN1101</td>
<td>Introduction to Statistics</td>
</tr>
<tr>
<td>or STAT UN1201</td>
<td>Calculus-Based Introduction to Statistics</td>
</tr>
</tbody>
</table>

One additional 2000 or 3000 level psychology course from a list approved by the Psychology Departmental adviser to the program.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC S2215D</td>
<td>Cognition and the Brain</td>
</tr>
<tr>
<td>or PSYC S2215D</td>
<td>Cognition and the Brain</td>
</tr>
<tr>
<td>PSYC UN2220</td>
<td>Cognition: Memory and Stress</td>
</tr>
<tr>
<td>PSYC W2225</td>
<td>Attention and Perception</td>
</tr>
<tr>
<td>PSYC W2230</td>
<td>Perception and Sensory Processes</td>
</tr>
<tr>
<td>PSYC UN2235</td>
<td>Thinking and Decision Making</td>
</tr>
<tr>
<td>or PSYC S2235Q</td>
<td>Thinking and Decision Making</td>
</tr>
<tr>
<td>PSYC UN2250</td>
<td>Evolution of Cognition</td>
</tr>
<tr>
<td>PSYC UN2280</td>
<td>Introduction to Developmental Psychology</td>
</tr>
<tr>
<td>PSYC UN2420</td>
<td>Animal Behavior</td>
</tr>
<tr>
<td>or PSYC UN2430</td>
<td>Cognitive Neuroscience</td>
</tr>
<tr>
<td>PSYC W2440</td>
<td>Language and the Brain</td>
</tr>
<tr>
<td>PSYC S2450Q</td>
<td>Behavioral Neuroscience</td>
</tr>
<tr>
<td>or PSYC UN2450</td>
<td>Behavioral Neuroscience</td>
</tr>
<tr>
<td>PSYC UN2460</td>
<td>The Developing Brain</td>
</tr>
<tr>
<td>PSYC W2480</td>
<td>The Developing Brain</td>
</tr>
<tr>
<td>PSYC UN2620</td>
<td>Abnormal Behavior</td>
</tr>
<tr>
<td>or PSYC S2620Q</td>
<td>Abnormal Behavior</td>
</tr>
</tbody>
</table>

One advanced psychology seminar from a list approved by the Psychology Department adviser to the program.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC W3225</td>
<td>The Wandering Mind: Psychological Approaches to Distraction</td>
</tr>
<tr>
<td>PSYC W3250</td>
<td>Seminar in Space Perception (Seminar)</td>
</tr>
<tr>
<td>or PSYC G4230</td>
<td>Sensation and Perception (Seminar)</td>
</tr>
<tr>
<td>PSYC W3255</td>
<td>Modern Classics in Visual Perception, Visual Science and Visual Neuroscience (Seminar)</td>
</tr>
<tr>
<td>or PSYC G4255</td>
<td>Modern Classics in Visual Perception, Visual Science and Visual Neuroscience (Seminar)</td>
</tr>
<tr>
<td>PSYC W3265</td>
<td>Auditory Perception (Seminar)</td>
</tr>
<tr>
<td>PSYC UN3270</td>
<td>Computational Approaches to Human Vision (Seminar)</td>
</tr>
<tr>
<td>PSYC W3280</td>
<td>Seminar In Infant Development</td>
</tr>
<tr>
<td>or PSYC S3280D</td>
<td>Seminar in Infant Development</td>
</tr>
<tr>
<td>PSYC S3285D</td>
<td>The Psychology of Disaster Preparedness</td>
</tr>
<tr>
<td>PSYC UN3290</td>
<td>Self: A Cognitive Exploration (Seminar)</td>
</tr>
<tr>
<td>PSYC G4220</td>
<td>Cognition and Psychopathology (Seminar)</td>
</tr>
<tr>
<td>PSYC GU4222</td>
<td>The Cognitive Neuroscience of Aging (Seminar)</td>
</tr>
<tr>
<td>PSYC GU4223</td>
<td>Memory and Executive Function Thru the Lifespan</td>
</tr>
<tr>
<td>PSYC GU4225</td>
<td>Consciousness and Attention (Seminar)</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>PSYC GU4229</td>
<td>Attention and Perception</td>
</tr>
<tr>
<td>PSYC G4230</td>
<td>Sensation and Perception (Seminar)</td>
</tr>
<tr>
<td>PSYC GU4232</td>
<td>Production and Perception of Language</td>
</tr>
<tr>
<td>PSYC GU4235</td>
<td></td>
</tr>
<tr>
<td>PSYC GU4239</td>
<td>Cognitive neuroscience of narrative and film</td>
</tr>
<tr>
<td>PSYC GU4250</td>
<td>Evolution of Intelligence, Cognition, and Language (Seminar)</td>
</tr>
<tr>
<td>PSYC GU4270</td>
<td>Cognitive Processes (Seminar)</td>
</tr>
<tr>
<td>PSYC G4272</td>
<td>Advanced Seminar in Language Development</td>
</tr>
<tr>
<td>PSYC G4275</td>
<td>Contemporary Topics in Language and Communication (Seminar)</td>
</tr>
<tr>
<td>PSYC GU4280</td>
<td>Core Knowledge (Seminar)</td>
</tr>
<tr>
<td>PSYC G4285</td>
<td>Multidisciplinary Approaches to Human Decision Making (Seminar)</td>
</tr>
<tr>
<td>PSYC GU4287</td>
<td>Decision Architecture</td>
</tr>
<tr>
<td>PSYC S3410Q</td>
<td>Seminar in Emotion</td>
</tr>
<tr>
<td>PSYC S3425D</td>
<td>Animals in Our Own Backyard: The Science of Observing Behavior</td>
</tr>
<tr>
<td>PSYC W3435</td>
<td>Neurobiology of Reproductive Behavior (Seminar)</td>
</tr>
<tr>
<td>PSYC W3440</td>
<td>Issues In Brain and Behavior (Seminar)</td>
</tr>
<tr>
<td>or PSYC UN3445</td>
<td>The Brain & Memory</td>
</tr>
<tr>
<td>PSYC UN3450</td>
<td>Evolution of Intelligence and Consciousness (Seminar)</td>
</tr>
<tr>
<td>or PSYC G4450</td>
<td>The Evolution of Intelligence & Consciousness (Seminar)</td>
</tr>
<tr>
<td>PSYC UN3460</td>
<td>Evolution of Behavior (Seminar)</td>
</tr>
<tr>
<td>PSYC UN3470</td>
<td>Brain Evolution: Becoming Human (Seminar)</td>
</tr>
<tr>
<td>PSYC UN3481</td>
<td>Critical Periods in Brain Development and Behavior</td>
</tr>
<tr>
<td>PSYC S3483D</td>
<td>The Dynamic Brain: Plasticity from Birth to Old Age</td>
</tr>
<tr>
<td>PSYC W3484</td>
<td>Life Span Development: Theory and Methods</td>
</tr>
<tr>
<td>PSYC UN3496</td>
<td>Neuroscience and Society</td>
</tr>
<tr>
<td>or PSYC S3496Q</td>
<td>Neuroscience and Society</td>
</tr>
<tr>
<td>PSYC GU4420</td>
<td>Animal Cognition (Seminar)</td>
</tr>
<tr>
<td>PSYC GU4430</td>
<td>Learning and the Brain (Seminar)</td>
</tr>
<tr>
<td>PSYC GU4435</td>
<td>Non-Mnemonic Functions of Memory Systems</td>
</tr>
<tr>
<td>PSYC GU4440</td>
<td>Topics in Neurobiology and Behavior (Seminar)</td>
</tr>
<tr>
<td>or PSYC S4440Q</td>
<td>Topics in Neurobiology and Behavior</td>
</tr>
<tr>
<td>PSYC G4460</td>
<td>Cognitive Neuroscience and the Media (Seminar)</td>
</tr>
<tr>
<td>PSYC G4475</td>
<td>Neurobiology of Social Behavior</td>
</tr>
<tr>
<td>PSYC GU4480</td>
<td>Psychobiology of Infant Development (Seminar)</td>
</tr>
<tr>
<td>PSYC G4485</td>
<td>Affective Neuroscience (Seminar)</td>
</tr>
<tr>
<td>PSYC GU4486</td>
<td>Developmental and Affective Neuroscience (Seminar)</td>
</tr>
<tr>
<td>PSYC GU4490</td>
<td>Inheritance (Seminar)</td>
</tr>
<tr>
<td>PSYC G4492</td>
<td>Psychobiology of Stress</td>
</tr>
<tr>
<td>PSYC G4495</td>
<td>Ethics, Genetics, and the Brain</td>
</tr>
<tr>
<td>PSYC GU4498</td>
<td>Behavioral Epigenetics</td>
</tr>
<tr>
<td>PSYC G4499</td>
<td>Behavioral Psychopharmacology (Seminar)</td>
</tr>
<tr>
<td>PSYC UN3615</td>
<td>Children at Risk (Lecture)</td>
</tr>
<tr>
<td>PSYC UN3620</td>
<td>Seminar in Development Psychopathology</td>
</tr>
<tr>
<td>PSYC UN3625</td>
<td>Clinical Neuropsychology (Seminar)</td>
</tr>
<tr>
<td>or PSYC S3625D</td>
<td>Clinical Neuropsychology Seminar</td>
</tr>
<tr>
<td>PSYC UN3680</td>
<td>Social Cognitive Neuroscience (Seminar)</td>
</tr>
<tr>
<td>or PSYC GU4685</td>
<td>Social Cognitive Neuroscience (Seminar)</td>
</tr>
<tr>
<td>PSYC G4635</td>
<td>The Unconscious Mind (Seminar)</td>
</tr>
<tr>
<td>PSYC GU4690</td>
<td>Social Factors and Psychopathology (Seminar)</td>
</tr>
</tbody>
</table>

For more details, see the Psychology section in this Bulletin, and for additional information visit the Department of Biological Sciences website: http://biology.columbia.edu/pages/neuroscience-and-behavior-major-requirements/.

Concentration in Biology

Students who wish to concentrate in biology must design their programs in advance with the director of undergraduate studies or a departmental adviser.

The requirement for the concentration is 22 points in biology or biochemistry, with at least five courses chosen from the courses listed in the Biological Sciences section of the Bulletin. Additional courses in physics, chemistry, and mathematics are required as detailed below.

A project laboratory and BIOL UN2501 Contemporary Biology Laboratory may not both be counted toward the 22-point total. See the biology major requirements for additional information.

The requirements for the concentration in biology are as follows:

BIOL UN2005
Introductory Biology I: Biochemistry, Genetics & Molecular Biology
or **EEEB UN2001**
Environmental Biology I: Elements to Organisms

Select at least one of the following core courses:

- **BIOL UN3022**
 Developmental Biology
- **BIOL UN3031**
 Genetics
- **BIOL UN3041**
 Cell Biology
- **BIOC UN3501**
 Biochemistry: Structure and Metabolism
or **BIOC UN3300**
 Biochemistry
- **BIOC UN3512**
 Molecular Biology

Beginning Fall 2018, no biology lab is required for the concentration. All other requirements remain the same, including enough electives to reach at least 22 points. Either UN2501 or a five-point lab course, but not both, may count towards the 22 point total.

Chemistry through organic including labs; see biology major for options

One year of physics, including laboratory; see biology major for options

One year of college-level mathematics (ordinarily this should be calculus); see biology major for options

For more details, visit http://biology.columbia.edu/pages/biology-concentration-requirements/.
Major in Environmental Biology

Fall 2020

BIOC UN2005
Introductory Biology I: Biochemistry, Genetics & Molecular Biology

BIOC UN3512
Molecular Biology

BIOL GU4075
Biological Microscopy

BIOL GU4300
Biochemistry

BIOL GU4310
Contemporary Biology Laboratory

BIOL GU4323
Biophysical Chemistry I

BIOC UN3300
Biophysics

BIOL UN1130
Genes and Development

BIOL UN2006
Introductory Biology II: Cell Biology, Development & Physiology

BIOL UN2401
Contemporary Biology I: Biochemistry, Genetics & Molecular Biology

BIOL UN2501
Contemporary Biology Laboratory

BIOL UN3022
Developmental Biology

BIOL UN3041
Cell Biology

BIOL UN3073
Cellular and Molecular Immunology

BIOL UN3300
Biochemistry

BIOL UN3404
Seminar on the Global Threat of Antimicrobial Resistance

BIOL UN3500
Independent Biological Research

BIOL UN3512
Molecular Biology

BIOC UN3501
Biochemistry: Structure and Metabolism

Spring 2020

BIOC UN3300
Biophysics

BIOL UN11908
First-Year Seminar in Modern Biology

BIOL UN22005
Introductory Biology I: Biochemistry, Genetics & Molecular Biology

BIOL UN2401
Contemporary Biology I: Biochemistry, Genetics & Molecular Biology

BIOL UN3022
Developmental Biology

BIOL UN3041
Cell Biology

BIOL UN3073
Cellular and Molecular Immunology

BIOL UN3300
Biochemistry

BIOL UN3404
Seminar on the Global Threat of Antimicrobial Resistance

BIOL UN3500
Independent Biological Research

BIOL UN3512
Molecular Biology

BIOC UN3501
Biochemistry

BIOL UN3300
Biochemistry

BIOL UN3500
Independent Biological Research

BIOL UN3512
Molecular Biology

All Courses

BIOC UN3300 Biochemistry. 3 points.
Prerequisites: one year each of Introductory Biology and General Chemistry. Corequisites: Organic Chemistry. Primarily aimed at nontraditional students and undergraduates who have course conflicts with BIOC UN3501.

Biochemistry is the study of the chemical processes within organisms that give rise to the immense complexity of life. This complexity emerges from a highly regulated and coordinated flow of chemical energy from one biomolecule to another. This course serves to familiarize students with the spectrum of biomolecules (carbohydrates, lipids, amino acids, nucleic acids, etc.) as well as the fundamental chemical processes (glycolysis, citric acid cycle, fatty acid metabolism, etc.) that allow life to happen. In particular, this course will employ active learning techniques and critical thinking problem-solving to engage students in answering the question: how is the complexity of life possible? NOTE: While Organic Chemistry is listed as a corequisite, it is highly recommended that you take Organic Chemistry beforehand.

BIOC UN3501 Biochemistry: Structure and Metabolism. 4 points.
Prerequisites: one year of BIOL UN2005 and BIOL UN2006 and one year of organic chemistry.

Lecture and recitation. Students wishing to cover the full range of modern biochemistry should take both BIOC UN3501 and BIOC UN3512. UN3501 covers subject matters in modern biochemistry, including chemical biology and structural biology, discussing the structure and function of both proteins and small molecules in biological systems. Proteins are the primary class of biological macromolecules and serve to carry out most cellular functions. Small organic molecules function in energy production and creating building blocks for the components of cells and can also be used to perturb the functions of proteins directly. The first half of the course covers protein structure, enzyme kinetics and enzyme mechanism. The second half of the course explores how small molecules are used endogenously by living systems in metabolic and catabolic pathways; this part of the course focuses on mechanistic organic chemistry involved in metabolic pathways.

BIOC UN3512 Molecular Biology. 3 points.
Prerequisites: one year of biology. Recommended but not required: BIOC UN3501.

This is a lecture course designed for advanced undergraduates and graduate students. The focus is on understanding at the molecular level how genetic information is stored within the cell and how it is regulated. Topics covered include genome organization, DNA replication, transcription, RNA processing, and translation. This course will also emphasize the critical analysis of the scientific literature and help students understand how to identify important biological problems and how to address them experimentally. SPS and TC students may register for this course, but they must first obtain the written permission of the instructor, by filling out a paper Registration Adjustment Form (Add/Drop form). The form can be downloaded at the URL below, but must be signed by the instructor and returned to the office of the registrar. http://registrar.columbia.edu/sites/default/files/content/reg-adjustment.pdf
BIOC GU4323 Biophysical Chemistry I. 4 points.
This course provides a rigorous introduction to the theory underlying widely used biophysical methods, which will be illustrated by practical applications to contemporary biomedical research problems. The course has two equally important goals. The first goal is to explicate the fundamental approaches used by physical chemists to understand the behavior of molecules and to develop related analytical tools. The second goal is to prepare students to apply these methods themselves to their own research projects. The course will be divided into seven modules: (i) solution thermodynamics; (ii) hydrodynamic methods; (iii) statistical analysis of experimental data; (iv) basic quantum mechanics; (v) optical spectroscopy with an emphasis on fluorescence; (vi) nuclear magnetic resonance spectroscopy; and (vii) light-scattering and diffraction methods. The first three modules will be covered during the fall term. In each module, the underlying physical theories and models with be presented and used to derive the mathematical equations applied to the analysis of experimental data. Weekly recitations will emphasize the analysis of real experimental data and understanding the applications of biophysical experimentation in published research papers.

BIOC GU4324 Biophysical Chemistry II. 4 points.
This course provides a rigorous introduction to the theory underlying widely used biophysical methods, which will be illustrated by practical applications to contemporary biomedical research problems. The course has two equally important goals. The first goal is to explicate the fundamental approaches used by physical chemists to understand the behavior of molecules and to develop related analytical tools. The second goal is to prepare students to apply these methods themselves to their own research projects. The course will be divided into seven modules: (i) solution thermodynamics; (ii) hydrodynamic methods; (iii) statistical analysis of experimental data; (iv) basic quantum mechanics; (v) optical spectroscopy with an emphasis on fluorescence; (vi) nuclear magnetic resonance spectroscopy; and (vii) light-scattering and diffraction methods. In each module, the underlying physical theories and models with be presented and used to derive the mathematical equations applied to the analysis of experimental data. Weekly recitations will emphasize the analysis of real experimental data and understanding the applications of biophysical experimentation in published research papers.

BIOC GU4501 Biochemistry: Structure and Metabolism. 4 points.
Undergraduates should register for BIOC C3501.
Prerequisites: one year of BIOL C2005 and BIOL C2006 and one year of organic chemistry.
Lecture and recitation. Students wishing to cover the full range of modern biochemistry should take both BIOC C3501 and C3512. C3501 covers subject matters in modern biochemistry, including chemical biology and structural biology, discussing the structure and function of both proteins and small molecules in biological systems. Proteins are the primary class of biological macromolecules and serve to carry out most cellular functions. Small organic molecules function in energy production and creating building blocks for the components of cells and can also be used to perturb the functions of proteins directly. The first half of the course covers protein structure, enzyme kinetics and enzyme mechanism. The second half of the course explores how small molecules are used endogenously by living systems in metabolic and catabolic pathways; this part of the course focuses on mechanistic organic chemistry involved in metabolic pathways.

BIOC GU4512 Molecular Biology. 3 points.
Prerequisites: one year of biology. Recommended but not required: BIOC UN3501
This is a lecture course designed for advanced undergraduates and graduate students. The focus is on understanding at the molecular level how genetic information is stored within the cell and how it is regulated. Topics covered include genome organization, DNA replication, transcription, RNA processing, and translation. This course will also emphasize the critical analysis of the scientific literature and help students understand how to identify important biological problems and how to address them experimentally. SCE and TC students may register for this course, but they must first obtain the written permission of the instructor, by filling out a paper Registration Adjustment Form (Add/ Drop form). The form can be downloaded at the URL below, but must be signed by the instructor and returned to the office of the registrar. http://registrar.columbia.edu/sites/default/files/content/reg-adjustment.pdf

Spring 2020: BIOC GU4512
Course Number	Section/Call Number	Times/Location	Instructor	Points	Enrollment
BIOC 4512 | 001/11536 | M W 2:40pm - 3:55pm | James Manley, 3 | 3 | 17/80

BIOC UN1002 Theory and Practice of Science: Biology. 4 points.
CC/GS: Partial Fulfillment of Science Requirement
Prerequisites: either BIOL UN1015 or AP biology, or the instructor's permission.
Lecture and recitation. By analysis and example from the primary literature of evolution and genetics, examines how scientific theories are invented and how they come to be accepted, verified, and in some cases rejected. Papers begin with Darwin and Mendel and end with Watson. Ordinarily does not fulfill biology major or concentration requirements. Normally may not be taken for credit by any student who has previously completed any biology course numbered 2000 or above. BIOL UN1015 should be taken first then BIOL UN1002 for nonscience majors.
BIOL UN1130 Genes and Development. 3 points.
CC/GS: Partial Fulfillment of Science Requirement

Prerequisites: one year of high school or college biology.

This course covers selected topics in genetics and developmental biology, with special emphasis on issues that are relevant to contemporary society. Lectures and readings will cover the basic principles of genetics, how genes are expressed and regulated, the role of genes in normal development, and how alterations in genes lead to abnormal development and disease. We will also examine how genes can be manipulated in the laboratory, and look at the contributions of these manipulations to basic science and medicine, as well as some practical applications of these technologies. Interspersed student-run workshops will allow students to research and discuss the ethical and societal impacts of specific topics (e.g. in vitro fertilization, uses and misuses of genetic information, genetically modified organisms, steroid use, and cloning). SCE and TC students may register for this course, but they must first obtain the written permission of the instructor, by filling out a paper Registration Adjustment Form (Add/Drop form). The form can be downloaded at the URL below, but must be signed by the instructor and returned to the office of the registrar. http://registrar.columbia.edu/sites/default/files/content/reg-adjustment.pdf

BIOL UN2006 Introductory Biology II: Cell Biology, Development & Physiology. 4 points.
Prerequisites: EEB UN2001 or BIOL UN2005, or the instructor’s permission.

Lecture and recitation. Recommended second term of biology for majors in biology and related majors, and for premedical students. Cellular biology and development; physiology of cells and organisms. Website: http://www.columbia.edu/cu/biology/courses/c2005/index.html. (http://www.columbia.edu/cu/biology/courses/c2005/) SPS, Barnard, and TC students may register for this course, but they must first obtain the written permission of the instructor, by filling out a paper Registration Adjustment Form (Add/Drop form). The form can be downloaded at the URL below, but must be signed by the instructor and returned to the office of the registrar. registrar. http://registrar.columbia.edu/sites/default/files/content/reg-adjustment.pdf

BIOL UN2005 Introductory Biology I: Biochemistry, Genetics & Molecular Biology. 4 points.
Prerequisites: one year of college chemistry, or a strong high school chemistry background.

Lecture and recitation. Recommended as the introductory biology course for biology and related majors, and for premedical students. Fundamental principles of biochemistry, molecular biology, and genetics. Website: http://www.columbia.edu/cu/biology/courses/c2005/index.html. (http://www.columbia.edu/cu/biology/courses/c2005/) SPS, Barnard, and TC students may register for this course, but they must first obtain the written permission of the instructor, by filling out a paper Registration Adjustment Form (Add/Drop form). The form can be downloaded at the URL below, but must be signed by the instructor and returned to the office of the registrar. http://registrar.columbia.edu/sites/default/files/content/reg-adjustment.pdf

Spring 2020: BIOL UN1130
Course	Number	Section/Call Number	Times/Location	Instructor	Points	Enrollment
BIOL 1130 | 001/12010 | | T Th 2:40pm - 3:55pm 602 Northwest Corner | Tulle Hazelrigg | 3 | 21/25

Fall 2020: BIOL UN1130
Course	Number	Section/Call Number	Times/Location	Instructor	Points	Enrollment
BIOL 1130 | 001/12184 | | W 2:40pm - 3:40pm 601 Fairchild Life Sciences Bldg | Alice Heicklen | 1 | 6/70

Spring 2020: BIOL UN2006
Course	Number	Section/Call Number	Times/Location	Instructor	Points	Enrollment
BIOL 2006 | 001/11547 | | T Th 10:10am - 11:25am 417 International Affairs Bldg | Deborah Mowshowitz, Mary Ann Price, Marko Jovanovic | 4 | 141/398

BIOL 2006 | 002/11548 | | T Th 4:10pm - 5:25pm 309 Havemeyer Hall | Deborah Mowshowitz, Mary Ann Price | 4 | 65/398

Spring 2020: BIOL UN2005
Course	Number	Section/Call Number	Times/Location	Instructor	Points	Enrollment
BIOL 2005 | 001/11824 | | T Th 10:10am - 11:25am Room TBA | Deborah Mowshowitz, Mary Ann Price, Marko Jovanovic | 4 | 190/400

BIOL 2005 | 002/11825 | | T Th 4:10pm - 5:25pm Room TBA | Deborah Mowshowitz, Mary Ann Price, Marko Jovanovic | 4 | 87/200

Spring 2020: BIOL UN1908
Course	Number	Section/Call Number	Times/Location	Instructor	Points	Enrollment
BIOL 1908 | 001/12010 | | T Th 2:40pm - 3:55pm 602 Northwest Corner | Tulle Hazelrigg | 3 | 21/25

Fall 2020: BIOL UN1908
Course	Number	Section/Call Number	Times/Location	Instructor	Points	Enrollment
BIOL 1908 | 001/12184 | | W 2:40pm - 3:40pm 601 Fairchild Life Sciences Bldg | Alice Heicklen | 1 | 6/70
BIOL UN2016 INTRO BIO II:CELL BIO,DEV/PHYS. 0 points.
Prerequisites: Prerequisites: Course does not fulfill Biology major requirements or premedical requirements. Enrollment in laboratory limited to 16 students per section.
Corequisites: BIOL UN2006
Prerequisites: Course does not fulfill Biology major requirements or premedical requirements. Enrollment in laboratory limited to 16 students per section. Exploration of the major discoveries and ideas that have revolutionized the way we view organisms and understand life. The basic concepts of cell biology, anatomy and physiology, genetics, evolution, and ecology will be traced from seminal discoveries to the modern era. The laboratory will develop these concepts and analyze biological diversity through a combined experimental and observational approach.

BIOL UN2401 Contemporary Biology I: Biochemistry, Genetics & Molecular Biology. 3 points.
Prerequisites: a course in college chemistry or the written permission of either the instructor or the premedical adviser.
Recommended as the introductory biology course for science majors who have completed a year of college chemistry and premedical students. The fundamental principles of biochemistry, molecular biology, and genetics. Website: http://www.columbia.edu/cu/biology/courses/c2005/index.html. (http://www.columbia.edu/cu/biology/courses/c2005/) SPS and TC students may register for this course, but they must first obtain the written permission of the instructor, by filling out a paper Registration Adjustment Form (Add/Drop form). The form can be downloaded at the URL below, but must be signed by the instructor and returned to the office of the registrar. registrar. http://registrar.columbia.edu/sites/default/files/content/reg-adjustment.pdf

BIOL UN2402 Contemporary Biology II: Cell Biology, Development & Physiology. 3 points.
Prerequisites: a course in college chemistry and BIOL UN2005 or BIOL UN2401, or the written permission of either the instructor or the premedical adviser.
Cellular biology and development; physiology of cells and organisms. Same lectures as BIOL UN2006, but recitation is optional. For a detailed description of the differences between the two courses, see the course web site or http://www.columbia.edu/cu/biology/courses/c2006/.
SPS, Barnard, and TC students may register for this course, but they must first obtain the written permission of the instructor, by filling out a paper Registration Adjustment Form (Add/Drop form). The form can be downloaded at the URL below, but must be signed by the instructor and returned to the office of the registrar. http://registrar.columbia.edu/sites/default/files/content/reg-adjustment.pdf
Prerequisites: Strongly recommended prerequisite or corequisite: BIOL UN2005 or BIOL UN2401.

Experiments focus on genetics and molecular biology, with an emphasis on data analysis and experimental techniques. The class also includes a study of mammalian anatomy and histology. SPS and TC students may register for this course, but they must first obtain the written permission of the instructor, by filling out a paper Registration Adjustment Form (Add/Drop form). The form can be downloaded at the URL below, but must be signed by the instructor and returned to the office of the registrar. http://registrar.columbia.edu/sites/default/files/content/reg-adjustment.pdf

Biol UN2700 Past and Future of the Human Genome. 3 points.
CC/GS: Partial Fulfillment of Science Requirement
We can now determine the genetic makeup of any person in a matter of days and at a cost already within reach for many millions of people. For the past few years a movement has emerged to provide detailed genetic information directly to ordinary people, in some cases with the explicit aim of helping prospective parents to “eliminate preventable genetic disease” or, as one newspaper put it, to promote “genetically flawless babies.”

But our technical capacity to both interrogate and manipulate the human genome has raced far ahead of serious consideration of the societal implications of doing so. This course will provide students with the background necessary to understand what has and will be done with the human genome and ultimately to help society formulate appropriate policies for wise stewardship of the human genome.

To help illustrate the information available in the human genome and how it may influence individuals’ lives, the instructors’ will share and discuss their own and other public genomes in ways both molecular and personal.

Fall 2020: BIOL UN2501
Course Number Section/Call Number Times/Location Instructor Points Enrollment
BIOL 2501 001/12011 T 1:10pm - 5:00pm 922 Schermerhorn Hall Claire Hazen 3 22/28
BIOL 2501 002/12012 W 1:10pm - 5:00pm 922 Schermerhorn Hall Claire Hazen 3 16/28
BIOL 2501 003/12013 Th 1:10pm - 5:00pm 922 Schermerhorn Hall Claire Hazen 3 13/28
BIOL 2501 004/12014 Th 6:40pm - 10:30pm 922 Schermerhorn Hall Claire Hazen 3 18/28
BIOL 2501 005/12015 F 1:10pm - 5:00pm 922 Schermerhorn Hall Claire Hazen 3 12/28

Spring 2020: BIOL UN2501
Course Number Section/Call Number Times/Location Instructor Points Enrollment
BIOL 2501 001/12011 T 1:10pm - 5:00pm 922 Schermerhorn Hall Claire Hazen 3 22/28
BIOL 2501 002/12012 W 1:10pm - 5:00pm 922 Schermerhorn Hall Claire Hazen 3 16/28
BIOL 2501 003/12013 Th 1:10pm - 5:00pm 922 Schermerhorn Hall Claire Hazen 3 13/28
BIOL 2501 004/12014 Th 6:40pm - 10:30pm 922 Schermerhorn Hall Claire Hazen 3 18/28
BIOL 2501 005/12015 F 1:10pm - 5:00pm 922 Schermerhorn Hall Claire Hazen 3 12/28

BIOL UN3004 Neurobiology I: Cellular and Molecular Neurobiology. 4 points.
Discussion Section Required
Prerequisites: one year of biology; a course in physics is highly recommended.
Lecture and recitation. This is an advanced course intended for majors providing an in depth survey of the cellular and molecular aspects of nerve cell function. Topics include: the cell biology and biochemistry of neurons, ionic and molecular basis of electrical signals, synaptic transmission and its modulation, function of sensory receptors. Although not required, it is intended to be followed by Neurobiology II (see below).
The recitation meets once per week in smaller groups and emphasizes readings from the primary literature.

Fall 2020: BIOL UN3004
Course Number Section/Call Number Times/Location Instructor Points Enrollment
BIOL 3004 001/11560 T Th 10:10am - 11:25am Room TBA Stuart 4 95/120

BIOL UN3005 Neurobiology II: Development & Systems. 4 points.
Prerequisites: BIOL UN3004, one year of biology, or the instructor’s permission.
This course is the ‘capstone’ course for the Neurobiology and Behavior undergraduate major at Columbia University and will be taught by the faculty of the Kavli Institute of Brain Science: http://www.kavlciolumbia.edu/ Science: http://www.kavlciolumbia.edu/.
It is designed for advanced undergraduate and graduate students. Knowledge of Cellular Neuroscience (how an action potential is generated and how a synapse works) will be assumed. It is strongly recommended that students take BIOL UN3004 Neurobiology I: Cellular and Molecular Neuroscience, or a similar course, before enrolling in BIOL UN3005. Students unsure about their backgrounds should check a representative syllabus of BIOL UN3004 on the BIOL UN3004 website (http://www.columbia.edu/cu/biology/courses/w3004/). Website for BIOL UN3005: http://www.columbia.edu/cu/biology/courses/w3005/index.html

Spring 2020: BIOL UN3005
Course Number Section/Call Number Times/Location Instructor Points Enrollment
BIOL 3005 001/11491 T Th 10:10am - 11:25am Room TBA Rafael Yuste 4 105/120

BIOL UN3006 Physiology. 3 points.
Prerequisites: (BIOL UN2005 and BIOL UN2006) or (BIOL UN2401 and BIOL UN2402) or the instructor’s permission.
Major physiological systems of vertebrates (circulatory, digestive, hormonal, etc.) with emphasis on cellular and molecular mechanisms and regulation. Readings include research articles from the scientific literature. SCE and TC students may register for this course, but they must first obtain the written permission of the instructor, by filling out a paper Registration Adjustment Form (Add/Drop form). The form can be downloaded at the URL below, but must be signed by the instructor and returned to the office of the registrar. http://registrar.columbia.edu/sites/default/files/content/reg-adjustment.pdf

Fall 2020: BIOL UN3006
Course Number Section/Call Number Times/Location Instructor Points Enrollment
BIOL 3006 001/11934 T Th 4:10pm - 5:25pm 601 Fairchild Life Sciences Bldg Mary Ann Price 3 29/72
BIOL UN3008 The Cellular Physiology of Disease. 3 points.
Prerequisites: one 3000-level course in Cell Biology or Biochemistry, or the instructor’s permission.
This course will present a quantitative description of the cellular physiology of excitable cells (mostly nerve and muscle). While the course will focus on examining basic mechanisms in cell physiology, there will be a thread of discussion of disease mechanisms throughout. The end of each lecture will include a discussion of the molecular mechanisms of selected diseases that relate to the topics covered in the lecture. The course will consist of two lectures per week. This course will be of interest to advanced (3000-4000 level) undergraduates that aim to pursue careers in medicine as well as those that will pursue careers in biomedical research. This course will also be of interest to graduate students desiring an introduction to the cellular physiology of nerve and muscle.

BIOL UN3022 Developmental Biology. 3 points.
CC/GS: Partial Fulfillment of Science Requirement
Prerequisites: BIOL UN2005 and BIOL UN2006 or equivalent.
Come discover how the union of egg and sperm triggers the complex cellular interactions that specify the diverse variety of cells present in multicellular organisms. Cellular and molecular aspects of sex determination, gametogenesis, genomic imprinting, X-chromosome inactivation, telomerase as the biological clock, stem cells, cloning, the pill and cell interactions will be explored, with an emphasis on humans. Original research articles will be discussed to further examine current research in developmental biology. SPS and TC students may register for this course, but they must first obtain the written permission of the instructor, by filling out a paper Registration Adjustment Form (Add/Drop form). The form can be downloaded at the URL below, but must be signed by the instructor and returned to the office of the registrar. http://registrar.columbia.edu/sites/default/files/content/reg-adjustment.pdf

BIOL UN3025 Neurogenetics. 3 points.
Prerequisites: (BIOL UN2005 and BIOL UN2006)
This course provides an introduction to Neurogenetics, which studies the role of genetics in the development and function of the nervous system (https://en.wikipedia.org/wiki/Neurogenetics). The course will be focused on teaching classic and contemporary concepts in genetics and neuroscience, rather than cataloguing mere facts. The course will emphasize the discovery processes, historical figures involved in these processes and methodologies of discovery. Primary research papers will be discussed in detail. A central organizational theme of the course is the presence of a common thread and narrative throughout the course. The common thread is an invertebrate model system, the roundworm Caenorhabditis elegans, which serves as a paradigm to show how simple genetic model systems have informed our view on the genetics of nervous system development and function. The ultimate goal of this course is to gain an understanding of the underlying principles of how the nervous system of one specific animal species forms, from beginning to end. The course is intended for neuroscience-inclined students (e.g. neuroscience majors) who want to learn about how genetic approaches have informed our understanding of brain development and function, and, vice versa, for students with an interest in molecular biology and genetics, who want to learn about key problems in neuroscience and how genetic approaches can address them.

Spring 2020: BIOL UN3025
<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 3025</td>
<td>001/11254</td>
<td>T Th 8:40am - 9:55am</td>
<td>Oliver Hobert</td>
<td>3</td>
<td>20/40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>303 Hamilton Hall</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BIOL UN3031 Genetics. 3 points.
Students may receive credit for BIOL W3031 or BIOL C3032, but not both due to overlap in course content.

Prerequisites: BIOL UN2005 and BIOL UN2006 or the equivalent.
General genetics course focused on basic principles of transmission genetics and the application of genetic approaches to the study of biological function. Principles will be illustrated using classical and contemporary examples from prokaryote and eukaryote organisms, and the experimental discoveries at their foundation will be featured. Applications will include genetic approaches to studying animal development and human diseases. SCE and TC students may register for this course, but they must first obtain the written permission of the instructor, by filling out a paper Registration Adjustment Form (Add/Drop form). The form can be downloaded at the URL below, but must be signed by the instructor and returned to the office of the registrar.http://registrar.columbia.edu/sites/default/files/content/reg-adjustment.pdf

Spring 2020: BIOL UN3031
<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 3031</td>
<td>001/11251</td>
<td>T Th 10:10am - 11:25am</td>
<td>Iva Greenwald</td>
<td>3</td>
<td>45/70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>602 Hamilton Hall</td>
<td>Michelle Attnsr</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BIOL UN3034 Biotechnology. 3 points.
CC/GS: Partial Fulfillment of Science Requirement
For upper-level undergraduates.

Prerequisites: genetics or molecular biology.
The course covers techniques currently used to explore and manipulate
gene function and their applications in medicine and the environment. Part I covers key laboratory manipulations, including DNA cloning, gene characterization, association of genes with disease, and methods for studying gene regulation and activities of gene products. Part II also covers commercial applications, and includes animal cell culture, production of recombinant proteins, novel diagnostics, high throughput screening, and environmental biosensors. SCE and TC students may register for this course, but they must first obtain the written permission of the instructor, by filling out a paper Registration Adjustment Form (Add/Drop form). The form can be downloaded at the URL below, but must be signed by the instructor and returned to the office of the registrar. http://registrar.columbia.edu/sites/default/files/content/reg-adjustment.pdf

BIOL UN3040 Lab in Molecular Biology. 3 points.
Enrollment limited to 12. Lab fee: $150.

Prerequisites: one year of biology (BIOL UN2005 and BIOL UN2006) and Contemporary Biology Laboratory (BIOL UN2501).
Prerequisites: one year of biology (UN2005-UN2006) and Contemporary Biology Laboratory (UN2501). This lab will explore various molecular biology techniques frequently utilized in modern molecular biology laboratories. The lab will consist of four modules: 1) Molecular verification of genetically modified organisms (GMOS); 2) Site-directed mutagenesis; 3) gDNA extraction, PCR amplification, sequencing and GenBank analysis of the COI genes from diverse fish species and 4) protein gel analysis of fish muscle components. SPS and TC students may register for this course, but they must first obtain the written permission of the instructor, by filling out a paper Registration Adjustment Form (Add/Drop form). The form can be downloaded at: http://registrar.columbia.edu/sites/default/files/content/reg-adjustment.pdf

BIOL UN3041 Cell Biology. 3 points.
CC/GS: Partial Fulfillment of Science Requirement

Prerequisites: one year of biology, normally BIOL UN2005-BIOL UN2006, or the equivalent.
Cell Biology 3041/4041 is an upper-division course that covers in depth all organelles of cells, how they make up tissues, secrete substances important for the organism, generate and adapt to their working environment in the body, move throughout development, and signal to each other. Because these topics were introduced in the Intro Course (taught by Mowshowitz and Chasin), this course or its equivalent is a pre-requisite for W3041/4041. Students for whom this course is useful include biology, biochem or biomedical engineering majors, those preparing to apply for medical school or graduate school, and those doing or planning to start doing research in a biology or biomedical lab. SCE and TC students may register for this course, but they must first obtain the written permission of the instructor, by filling out a paper Registration Adjustment Form (Add/Drop form). The form can be downloaded at the URL below, but must be signed by the instructor and returned to the office of the registrar. http://registrar.columbia.edu/sites/default/files/content/reg-adjustment.pdf

BIOL UN3050 Project Laboratory in Protein Biochemistry. 5 points.
Prerequisites: one year of biology (UN2005-UN2006) plus one upper-level course recommended. Enrollment is not restricted as long as total is no more than 14. Seniors will be given preference in the unlikely event that restriction is necessary. Students with specific questions should e-mail the instructor (jfh21@columbia.edu).

This course provides an intensive introduction to professional biomedical laboratory research. Students conduct a portion of an ongoing biochemical research project and write-up their results in a format suitable for publication in a peer-reviewed scientific research journal. Techniques in molecular biology and protein biochemistry are used to address a problem in mechanistic biochemistry or molecular pharmacology. Students are exposed to the full spectrum of techniques used in contemporary protein biochemistry, including molecular sequence analysis of genomic databases, molecular cloning and manipulation of recombinant DNA, protein expression in E. coli, protein purification, and biophysical characterization (typically including crystallization for x-ray structure determination). The course emphasizes the use of critical thinking skills in scientific research while giving students the opportunity to apply the basic knowledge learned in a wide variety of biology and chemistry lecture courses to a real research project. Examples of past projects can be found on the course website: https://www1.columbia.edu/sec/cu/biology/courses/w3050/class/index.html (https://www1.columbia.edu/sec/cu/biology/courses/w3050/class/) (cunix account required to login).
The course will cover the basic concepts underlying the mechanisms of innate and adaptive immunity, as well as key experimental methods currently used in the field. To keep it real, the course will include clinical correlates in such areas as infectious diseases, autoimmune diseases, cancer immunotherapy and transplantation. Taking this course won’t turn you into an immunologist, but it may make you want to become one, as was the case for several students last year. After taking the course, you should be able to read the literature intelligently in this rapidly advancing field. SCE and TC students may register for this course, but they must first obtain the written permission of the instructor, by filling out a paper Registration Adjustment Form (Add/Drop form). The form can be downloaded at the URL below, but must be signed by the instructor and returned to the office of the registrar.

BIOL UN3052 Project Laboratory in Molecular Genetics. 5 points.
Enrollment limited to approximately 12. Fee: $150.

Prerequisites: one year of introductory biology and the instructor’s permission.
Project laboratory on the manipulation of nucleic acids in prokaryotes, including DNA isolation, restriction mapping, and transformation. The first part of the laboratory involves learning of techniques to be used subsequently in independent research projects suggested by the professor.

BIOL UN3058 Project Laboratory in Microbiology. 5 points.
Lab fee: $150.

Prerequisites: one year of Intro Bio. An introductory biology or chemistry lab is recommended.
Bacteria are not just unicellular germs. This lab course will broaden your awareness of the amazing world of microbiology and the diverse capabilities of microbes. The focus will be on bacterial multicellularity, pigment production, and intercellular signaling. Pigment-producing bacteria will be isolated from the wild (i.e. Morningside Campus or your skin), and characterized using standard genetic tools (PCR, DNA gel electrophoresis, transformation, screen) and microbiology techniques (isolation of bacteria and growth of bacterial colonies, media preparation, enrichment techniques for pigments). These techniques will also be applied in the study of bacterial multicellularity and signaling in the standard lab strain Pseudomonas aeruginosa. SCE and TC students may register for this course, but they must first obtain the written permission of the instructor, by filling out a paper Registration Adjustment Form (Add/Drop form). The form can be downloaded at the URL below, but must be signed by the instructor and returned to the office of the registrar.

BIOL UN3073 Cellular and Molecular Immunology. 3 points.
CC/GS: Partial Fulfillment of Science Requirement

Prerequisites: two semesters of a rigorous, molecularly-oriented introductory biology course (such as UN2005 and UN2006), or the instructor’s permission.
This course will cover the basic concepts underlying the mechanisms of innate and adaptive immunity, as well as key experimental methods currently used in the field. To keep it real, the course will include clinical correlates in such areas as infectious diseases, autoimmune diseases, cancer immunotherapy and transplantation. Taking this course won't turn you into an immunologist, but it may make you want to become one, as was the case for several students last year. After taking the course, you should be able to read the literature intelligently in this rapidly advancing field. SCE and TC students may register for this course, but they must first obtain the written permission of the instructor, by filling out a paper Registration Adjustment Form (Add/Drop form). The form can be downloaded at the URL below, but must be signed by the instructor and returned to the office of the registrar.

BIOL UN3193 Stem Cell Biology and Applications. 3 points.
Prerequisites: three semesters of Biology or the instructor's permission.
The course examines current knowledge and potential medical applications of pluripotent stem cells (embryonic stem cells and induced pluripotent stem cells), direct conversions between cell types and adult, tissue-specific stem cells (concentrating mainly on hematopoietic and gut stem cells as leading paradigms). A basic lecture format will be supplemented by presentations and discussions of research papers. Recent reviews and research papers, together with extensive instructor notes, will be used in place of a textbook. SCE and TC students may register for this course, but they must first obtain the written permission of the instructor, by filling out a paper Registration Adjustment Form (Add/Drop form). The form can be downloaded at the URL below, but must be signed by the instructor and returned to the office of the registrar.

BIOL UN3208 Introduction to Evolutionary Biology. 3 points.
Prerequisites: recommended preparation: an introductory course in college biology.
Introduction to principles of general evolutionary theory, both nomological and historical; causes and processes of evolution; phylogenetic evolution; species concept and speciation; adaptation and macroevolution; concepts of phylogeny and classification.

BIOL UN3310 Virology. 3 points.
Prerequisites: two semesters of a rigorous, molecularly-oriented introductory biology course (such as BIOL UN2005), or the instructor's permission.
The course will emphasize the common reactions that must be completed by all viruses for successful reproduction within a host cell and survival and spread within a host population. The molecular basis of alternative reproductive cycles, the interactions of viruses with host organisms, and how these lead to disease are presented with examples drawn from a set of representative animal and human viruses.

BIOL UN3387 BIOLOGY TEST. 3 points.

ABCDE

BIOL UN3404 Seminar on the Global Threat of Antimicrobial Resistance. 3 points.
Prerequisites: (biol un2005 and biol un2006) or (biol un2401 and biol un2402)
The goal of this seminar is to provide an in-depth analysis of the ongoing threat of antimicrobial resistance. Discussions will include the molecular mechanisms, diverse epidemiology of transmission, the consequences of antimicrobial resistance and efforts to reduce the further emergence and spread of these pathogens both in the community and in healthcare settings. In the process, you learn a fair amount of medical microbiology.
BIOL UN3500 Independent Biological Research. 2 points.
Fee: $150. Students must register for a recitation section, BIOL W3510.
Fee: Lab Fee - 150

Prerequisites: Concurrent with registering for this course, a student must register with the department and provide a written invitation from a mentor; details of this procedure are available at http://www.columbia.edu/cu/biology/courses/w3500/index.htm. Students must register for recitations UN3510 or consult the instructor.
Corequisites: BIOL UN3510
The course involves independent study, faculty-supervised laboratory projects in contemporary biology. Concurrent with registering for this course, a student must register with the department, provide a written invitation from a mentor and submit a research proposal; details of this procedure are available at http://www.columbia.edu/cu/biology/courses/w3500/index.htm. A paper summarizing results of the work is required by the last day of finals for a letter grade; no late papers will be accepted. See the course web site (above) for more details. Students can take anywhere from 2-4 points for this course.

BIOL UN3560 Evolution in the age of genomics. 4 points.
Prerequisites: Introductory Biology I and II, or the instructors permission.
This course introduces basic concepts in evolutionary biology, from speciation to natural selection. While the lectures incorporate a historical perspective, the main goal of the class is to familiarize students with topics and tools of evolutionary genetics as practiced today, in the era of genomics. Thus, the focus will be on evidence from molecular evolution and genetics and exercises will assume a basic background in genetics. Examples will be drawn from across the tree of life, but with a primary focus on humans.

BIOL UN3700 Independent Clinical Research. 2-4 points.
Prerequisites: concurrent with registering for this course, a student must register with the department, provide a written invitation from a mentor, and submit a research proposal.
BIOL 3700 will provide an opportunity for students interested in independent research work in a hospital or hospice setting. In these settings, where patients and their needs are paramount, and where IRB rules and basic medical ethics make "wet-lab biology research" inappropriate, undergraduates may well find a way nevertheless, to assist and participate in ongoing clinical research. Such students, once they have identified a mentor willing to provide support, participation, and advising, may apply to the faculty member in charge of the course for 2-4 points/semester in BIOL W3700. This course will closely follow procedures already in place for BIOL 3500, but will ask potential mentors to provide evidence that students will gain hands-on experience in a clinical setting, while participating in a hospital- or hospice-based research agenda. A paper summarizing results of the work is required by the last day of finals for a letter grade; no late papers will be accepted.

BIOL UN3799 Molecular Biology of Cancer. 3 points.
Prerequisites: three terms of biology (genetics and cell biology recommended).
Cancer is one of the most dreaded common diseases. Yet it is also one of the great intellectual challenges in biology today. How does a cell become cancerous? What are the agents that cause this to occur? How do current findings about genes, cells, and organisms ranging from yeast cells to humans inform us about cancer? How do findings about cancer teach us new biological concepts? Over the past few years there have been great inroads into answering these questions which have led to new ways to diagnose and treat cancer. This course will discuss cancer from the point of view of basic biological research. We will cover topics in genetics, molecular and cell biology that are relevant to understanding the differences between normal and cancer cells. These will include tumor viruses, oncogenes, tumor suppressor genes, cell cycle regulation, programmed cell death and cell senescence. We will also study some current physiological concepts related to cancer including angiogenesis, tumor immunology, cancer stem cells, metastasis and new approaches to treatment that are built on recent discoveries in cancer biology. The text book for this course is "The Biology of Cancer Second Edition" by Robert A Weinberg (Garland Science). Additional and complementary readings will be assigned. SCE and TC students may register for this course, but they must first obtain the written permission of the instructor, by filling out a paper Registration Adjustment Form (Add/Drop form). The form can be downloaded at the URL below, but must be signed by the instructor and returned to the office of the registrar http://registrar.columbia.edu/sites/default/files/content/reg-adjustment.pdf

BIOL UN3995 (Section 1) Topics in Biology: Crossroads in Bioethics. 1-2 points.
Prerequisites: at least one introductory course in biology or chemistry.
This two credit multidisciplinary and interactive course will focus on contemporary issues in bioethics. Each topic will cover both the underlying science of new biotechnologies and the subsequent bioethical issues that emerge from these technologies. Classroom time will be devoted to student discussions, case presentations, and role playing. Topics include human trafficking, stem cell research, human reproductive cloning, neuroethics, genetic screening, human-animal chimeras, synthetic biology, bioterrorism, and neuroimaging.
BIOL UN3995 Topics in Biology. 1 point.
Enrollment limited to 18.

Prerequisites: Introductory Biology or equivalent.

Topics in Biology: Radiographic Anatomy and Select Pathology (Section 007 Fall semester)

Radiographic Anatomy and Selective Pathology is a survey course intended for undergraduate students. This course is not limited to science majors and would be of value to any student that may have an interest in studying the anatomy of the human body.

The course is a systematic approach to the study of the human body utilizing medical imaging. We will be studying neuro-anatomy, anatomy of the thorax, abdomen, and pelvis. Vascular and musculoskeletal imaging will be addressed as well. Modalities will include CT, MRI, PET/CT, and Ultrasound. Cross sectional imaging will be supplemented with pathology demonstrated on appropriate cross sectional imaging.

The class size will be limited to 15 students. The lecture will be offered Wednesday evenings from 6:10-7:00 pm. This will be a 1 credit course offered only during the fall semesters.

Topics in Biology: Crossroads in Bioethics (Section 001 Spring semester)

This two credit multidisciplinary and interactive course will focus on contemporary issues in bioethics and medical ethics. Each topic will cover both the underlying science of new biotechnologies and the subsequent bioethical issues that emerge from these technologies. Each topic will introduce a bioethical principle that will be explored using case studies. Students are expected to prepare for each class based on the assignment so that classroom time will be devoted to discussion, case presentations, and role playing rather than merely lectures. Topics include stem cell research, human reproductive cloning, bioterrorism, neuroethics, genetic screening, medical stem cell tourism, patents and science, forensic science and the interface of science and culture/religion.

BIOL GU4004 Neurobiology I: Cellular and Molecular Neurobiology. 4 points.
Discussion Section Required

Prerequisites: one year of biology; a course in physics is highly recommended.
Lecture and recitation. This is an advanced course intended for majors providing an in depth survey of the cellular and molecular aspects of nerve cell function. Topics include the cell biology and biochemistry of neurons, ionic and molecular basis of electrical signals, synaptic transmission and its modulation, function of sensory receptors. Although not required, it is intended to be followed by Neurobiology II (see below). The recitation meets once per week in smaller groups and emphasizes readings from the primary literature.

BIOL GU4008 The Cellular Physiology of Disease. 3 points.
Prerequisites: one 3000-level course in Cell Biology or Biochemistry or the instructor's permission.
Corequisites: BIOL GU4009
This course will present a quantitative description of the cellular physiology of excitable cells (mostly nerve and muscle). While the course will focus on examining basic mechanisms in cell physiology, there will be a thread of discussion of disease mechanisms throughout. The end of each lecture will include a discussion of the molecular mechanisms of selected diseases that relate to the topics covered in the lecture. The course will consist of two lectures per week. This course will be of interest to advanced (3000-4000 level) undergraduates that aim to pursue careers in medicine as well as those that will pursue careers in biomedical research. This course will also be of interest to graduate students desiring an introduction to the cellular physiology of nerve and muscle.

BIOL GU4009 Cellular Physiology of Diseases Laboratory. 1 point.
See department for details

BIOL GU4022 Developmental Biology. 3 points.
Prerequisites: BIOL C2005-C2006 or equivalent.
Come discover how the union of egg and sperm triggers the complex cellular interactions that specify the diverse variety of cells present in multicellular organisms. Cellular and molecular aspects of sex determination, gametogenesis, genomic imprinting, X-chromosome inactivation, telomerase as the biological clock, stem cells, cloning, the pill and cell interactions will be explored, with an emphasis on humans. Original research articles will be discussed to further examine current research in developmental biology. SCE and TC students may register for this course, but they must first obtain the written permission of the instructor, by filling out a paper Registration Adjustment Form (Add/Drop form). The form can be downloaded at the URL below, but must be signed by the instructor and returned to the office of the registrar. http://registrar.columbia.edu/sites/default/files/content/reg-adjustment.pdf

Fall 2020: BIOL GU4004

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 4004</td>
<td>001/11563</td>
<td>T Th 10:10am - 11:25am</td>
<td>Stuart Firestein</td>
<td>4</td>
<td>3/25</td>
</tr>
</tbody>
</table>

BIOL GU4001 Advanced Genetic Analysis. 3 points.
CC/GS: Partial Fulfillment of Science Requirement
Enrollment limited to 25.
Prerequisites: for undergraduates: Introductory Genetics (W3031) and the instructor's permission.
This seminar course provides a detailed presentation of areas in classical and molecular genetics for advanced undergraduates and beginning graduate students. Topics include transmission genetics, gain and loss of function mutations, genetic redundancy, suppressors, enhancers, epistasis, expression patterns, using transposons, and genome analysis. The course is a mixture of lectures, student presentations, seminar discussions, and readings from the original literature.
BIOL GU4031 Genetics. 3 points.
Open to Biotech M.A. students and other graduate students.

Corequisites: Recommended: one term of organic chemistry.
Prerequisites: BIOL UN2005 and BIOL UN2006 or the equivalent. General genetics course focused on basic principles of transmission genetics and the application of genetic approaches to the study of biological function. Principles will be illustrated using classical and contemporary examples from prokaryote and eukaryote organisms, and the experimental discoveries at their foundation will be featured. Applications will include genetic approaches to studying animal development and human diseases. SCE and TC students may register for this course, but they must first obtain the written permission of the instructor, by filling out a paper Registration Adjustment Form (Add/Drop form). The form can be downloaded at the URL below, but must be signed by the instructor and returned to the office of the registrar.http://registrar.columbia.edu/sites/default/files/content/reg-adjustment.pdf

BIOL GU4034 Biotechnology. 3 points.
Prerequisites: genetics or molecular biology.
The course covers techniques currently used to explore and manipulate gene function and their applications in medicine and the environment. Part I covers key laboratory manipulations, including DNA cloning, gene characterization, association of genes with disease, and methods for studying gene regulation and activities of gene products. Part II also covers commercial applications, and includes animal cell culture, production of recombinant proteins, novel diagnostics, high throughput screening, and environmental biosensors.

BIOL GU4035 Seminar in Epigenetics. 3 points.
Prerequisites: Genetics (3032/4032) or Molecular Biology (3512/4512), and the instructor's permission.
This is a combined lecture/seminar course designed for advanced undergraduates and graduate students. The focus is on understanding the mechanisms underlying epigenetic phenomena: the heritable inheritance of genetic states without change in DNA sequence. Epigenetic mechanisms play important roles during normal animal development and oncogenesis. It is an area under intensive scientific investigation and the course will focus on recent advances in understanding these phenomena. In each class, students will present and discuss in detail recent papers and background material concerning each individual topic, followed by an introductory lecture on the following week's topic. This course will emphasize critical analysis of the scientific literature and help students understand how to identify important biological problems and how to address them experimentally.

BIOL GU4065 Molecular Biology of Disease. 3 points.
Enrollment limited to 30.

Prerequisites: open to advanced undergraduates with the instructor's permission. Completion of a 3000-level course in at least one of the following, with completion of two or more preferred: genetics, biochemistry, cell biology. Molecular and cellular basis of infectious diseases and inherited propensities. Mechanisms of disease examined in discussions based on current research papers. Lectures, discussions, and student presentations. Essay required in lieu of final examination.

BIOL GU4070 The Biology and Physics of Single Molecules. 3 points.
CC/GS: Partial Fulfillment of Science Requirement
Prerequisites: calculus, chemistry, physics, one year of biology, or the instructor's permission.
This course will examine the fundamental mechanisms underlying the behavior of biological molecules, at the single molecule level. The course will cover the methods used to track single molecules: optical tweezers, single molecule AFM, Magnetic tweezers, Optical techniques and Fluorescence energy transfer (FRET) probes. The course will cover the mechanism of action of mechanical motors, such as myosin dynein, kinesin. It will cover the action of DNA binding enzymes such as topoisomerases, helicases, etc. We will also discuss the function of large motors such as the ATP Synthase and the bacterial AAA ATPases. We will discuss the mechanical properties of DNA, RNA, and proteins. The course will consist mainly of reviewing classical experiments in each category, and developing the background physical theories to promote a deep understanding of biological mechanisms at the mesoscopic level.

BIOL GU4075 Biology at Physical Extremes. 3 points.
Prerequisites: one year each of biology and physics, or the instructor's permission.
This is a combined lecture/seminar course designed for graduate students and advanced undergraduates. The course will cover a series of cases where biological systems take advantage of physical phenomena in counter intuitive and surprising ways to accomplish their functions. In each of these cases, we will discuss different physical mechanisms at work. We will limit our discussions to simple, qualitative arguments. We will also discuss experimental methods enabling the study of these biological systems. Overall, the course will expose students to a wide range of physical concepts involved in biological processes.
BIOL GU4080 The Ancient and Modern RNA Worlds. 3 points.
Prerequisites: BIOL UN3512
RNA has recently taken center stage with the discovery that RNA molecules sculpt the landscape and information contained within our genomes. Furthermore, some RNA molecules combine the roles of both genotype and phenotype into a single molecule. These multi-tasking RNAs offering a possible solution to the paradox of which came first: DNA or proteins. This seminar explores the link between modern RNA, metabolism, and insights into a prebiotic RNA world that existed some 3.8 billion years ago. Topics include the origin of life, replication, and the origin of the genetic code; conventional, new, and bizarre forms of RNA processing; and structure, function and evolution of key RNA molecules, including the ribosome. The format will be weekly seminar discussions with presentations. Readings will be taken from the primary literature, emphasizing seminal and recent literature. Requirements will be student presentations, class participation, and a final paper.

BIOL GU4082 Theoretical Foundations and Applications of Biophysical Methods. 4 points.
Prerequisites: at least one year of coursework in single-variable calculus and not being freaked-out by multivariable calculus. Physics coursework through a calculus-based treatment of classical mechanics and electromagnetism. One year of general chemistry (either AP Chemistry or a college course). One year of college coursework in molecular/cellular biology and biochemistry equivalent to Biology C2005-2006 at Columbia. Rigorous introduction to the theory underlying biophysical methods, which are illustrated by practical applications to biomedical research. Emphasizes the approach used by physical chemists to understand and analyze the behavior of molecules, while also preparing students to apply these methods in their own research. Course modules cover: (i) statistical analysis of data; (ii) solution thermodynamics; (iii) hydrodynamic methods; (iv) light-scattering methods; and (v) spectroscopic methods, especially fluorescence. Recitations focus on curve-fitting analyses of experimental data.

BIOL GU4193 Stem Cell Biology and Applications. 3 points.
Prerequisites: Three semesters of Biology or instructor permission. The course examines current knowledge and potential medical applications of pluripotent stem cells (embryonic stem cells and induced pluripotent stem cells), direct conversions between cell types and adult, tissue-specific stem cells (concentrating mainly on hematopoietic and gut stem cells as leading paradigms). A basic lecture format will be supplemented by presentations and discussions of research papers. Recent reviews and research papers together with extensive instructor notes will be used in place of a textbook.

BIOL GU4260 Proteomics Laboratory. 3 points.
Lab Fee: $150.
This course deals with the proteome: the expressed protein complement of a cell, organelle, matrix, tissue, organ or organism. The study of the proteome (proteomics) is broadly applicable to life sciences research, and is increasingly important in academic, government and industrial research through extension of the impact of advances in genomics. These techniques are being applied to basic research, exploratory studies of cancer and other diseases, drug discovery and many other topics. Emphasis will be on mastery of practical techniques of sample preparation, liquid chromatography/ mass spectrometry (LC/MS) with electrospray ionization. Database searching and interpretation for identification of proteins will be intensively studied, and practiced supported by background tutorials and exercises covering other techniques used in proteomics. Open to students in M.A. in Biotechnology Program (points can be counted against laboratory requirement for that program), Ph.D. and advanced undergraduate students with background in genetics or molecular biology. Students should be comfortable with basic biotechnology laboratory techniques as well as being interested in doing computational work in a Windows environment.

BIOL GU4290 Biological Microscopy. 3 points.
Prerequisites: (biol un2005 or biol un2401) or BIOL UN2005 or BIOL UN2401 or equivalent
This is an advanced microscopy course aimed at graduates and advanced undergraduate students, who are interested in learning about the foundational principles of microscopy approaches and their applications in life sciences. The course will introduce the fundamentals of optics, light-matter interaction and in-depth view of most commonly used advanced microscopy methods, explore important practical imaging parameters, and also introduce digital images and their analysis.

BIOL GU4300 Drugs and Disease. 3 points.
Prerequisites: four semesters of biology with a firm foundation in molecular and cellular biology.
Introduces students to the current understanding of human diseases, novel therapeutic approaches and drug development process. Selected topics will be covered in order to give students a feeling of the field of biotechnology in health science. This course also aims to strengthen students’ skills in literature comprehension and critical thinking.
BIOL GU4305 Seminar in Biotechnology. 3 points.
Prerequisites: BIOL W4300 or the instructor’s permission.
A weekly seminar and discussion course focusing on the most recent development in biotechnology. Professionals of the pharmaceutical, biotechnology, and related industries will be invited to present and lead discussions.

Spring 2020: BIOL GU4305
Course Number Section/Call Number Times/Location Instructor Points Enrollment
BIOL 4305 001/16445 W 2:10pm - 4:00pm 601 Firechld Life Sciences Bldg Lili Yamasaki 3 34/45

BIOL GU4310 Virology. 3 points.
The basic thesis of the course is that all viruses adopt a common strategy. The strategy is simple:

1. Viral genomes are contained in metastable particles.

2. Genomes encode gene products that promote an infectious cycle (mechanisms for genomes to enter cells, replicate, and exit in particles).

3. Infection patterns range from benign to lethal; infections can overcome or co-exist with host defenses.

Despite the apparent simplicity, the tactics evolved by particular virus families to survive and prosper are remarkable. This rich set of solutions to common problems in host/parsite interactions provides significant insight and powerful research tools. Virology has enabled a more detailed understanding of the structure and function of molecules, cells and organisms and has provided fundamental understanding of disease and virus evolution.

The course will emphasize the common reactions that must be completed by all viruses for successful reproduction within a host cell and survival and spread within a host population. The molecular basis of alternative reproductive cycles, the interactions of viruses with host organisms, and how these lead to disease are presented with examples drawn from a set of representative animal and human viruses, although selected bacterial viruses will be discussed.

BIOL GU4500 Supervised Research in Biotechnology. 2-6 points.
For students currently enrolled in M.A. Biotechnology only. Point total is based on work-load in lab which is determined by discussion with course instructor prior to registration.

Students conduct research related to biotechnology under the sponsorship of a mentor within the University. The student and the mentor determine the nature and extent of this independent study. In some laboratories, the student may be assigned to work with a postdoctoral fellow, graduate student or a senior member of the laboratory, who is in turn supervised by the mentor. The mentor is responsible for mentoring and evaluating the student’s progress and performance. Credits received from this course may be used to fulfill the laboratory requirement for the degree. Instructor permission required.

Web site: http://www.columbia.edu/cu/biology/courses/g4500-g4503/index.html (http://www.columbia.edu/cu/biology/courses/g4500-g4503/)

Spring 2020: BIOL GU4500
Course Number Section/Call Number Times/Location Instructor Points Enrollment
BIOL 4500 001/16810 2-6 0/30

BIOL GU4501 Supervised Research in Biotechnology. 2-6 points.
For students currently enrolled in M.A. Biotechnology only. Point total is based on work-load in lab which is determined by discussion with course instructor prior to registration.

Students conduct research related to biotechnology under the sponsorship of a mentor outside the University within the New York City Metropolitan Area unless otherwise approved by the Program. The student and the mentor determine the nature and extent of this independent study. In some laboratories, the student may be assigned to work with a postdoctoral fellow, graduate student or a senior member of the laboratory, who is in turn supervised by the mentor. The mentor is responsible for mentoring and evaluating the student’s progress and performance. Credits received from this course may be used to fulfill the laboratory requirement for the degree. Instructor permission required.

Web site: http://www.columbia.edu/cu/biology/courses/g4500-g4503/index.html (http://www.columbia.edu/cu/biology/courses/g4500-g4503/)

Spring 2020: BIOL GU4501
Course Number Section/Call Number Times/Location Instructor Points Enrollment
BIOL 4501 001/16811 2-6 0/30

BIOL GU4510 Genomics of Gene Regulation. 4 points.
Prerequisites: one year of Biology, Chemistry, and Physics. Courses taken at CU are recommended, but AP courses may be sufficient with the instructor’s permission.

This course will provide students with a quantitative understanding of the ways in which molecular interactions between nucleotides and proteins give rise to the behavior of gene regulatory networks. The key high-throughput genomics technologies for probing the cell at different levels using microarrays and next-generation sequencing will be discussed. Strategies for interpreting and integrating these data using statistics, biophysics, and genetics will be introduced. In computer exercises, student will learn the basics of the R language, and use it to perform analyses of genomics data sets. No prior computer programming experience is assumed. This highly interdisciplinary course is intended for advanced undergraduates as well as beginning graduate students in Biology, Chemistry, Physics, Engineering, and Computer Science. Offered in previous years as CHBC W4510.
BIOL GU4560 Evolution in the age of genomics. 4 points.
Prerequisites: introductory genetics or the instructor’s permission.
This course introduces basic concepts in evolutionary biology, from speciation to natural selection. While the lectures incorporate a historical perspective, the main goal of the class is to familiarize students with topics and tools of evolutionary genetics as practiced today, in the era of genomics. Thus, the focus will be on evidence from molecular evolution and genetics and exercises will assume a basic background in genetics. Examples will be drawn from across the tree of life, but with a primary focus on humans.

BIOL GU4600 Cell Signaling. 3 points.
Prerequisites: A strong background in molecular and cellular biology. Generally students with four or more courses are accepted.
Cell Signaling is a graduate course for Ph.D. students open to advanced undergraduate and masters students. The basic molecular mechanism of signal transduction pathways will be discussed related to cell growth and stress systems. There will be an emphasis on specific categories of signaling components. Students will read the literature and give presentations. Topics include the pathways by which cells respond to extracellular signals such as growth factors and the mechanisms by which extracellular signals are translated into alterations in the cell cycle, morphology, differentiation state, and motility of the responding cells. For stress pathways we will discuss how cells respond to survive the stress or induce their own death. In many cases these pathways will be related to human diseases.

BIOL GU4799 Readings in the Molecular Biology of Cancer. 3 points.
Tracing the discovery of the role of DNA tumor viruses in cancerous transformation. Oncogenes and tumor suppressors are analyzed with respect to their function in normal cell cycle, growth control, and human cancers. SCE and TC students may register for this course, but they must first obtain the written permission of the instructor, by filling out a paper Registration Adjustment Form (Add/Drop form). The form can be downloaded at the URL below, but must be signed by the instructor and returned to the office of the registrar. http://registrar.columbia.edu/sites/default/files/content/reg-adjustment.pdf

BIOL GU6002 Macromolecular Structure & Interactions. 4 points.
Open to PhD candidates in the biomedical and chemical sciences, and to other qualified graduate, undergraduate, and continuing education students with the instructor’s permission.
This course presents a rigorous introduction to solution thermodynamics and applies it to understanding the structural and functional features of proteins. After exploring the conceptual origins of thermodynamic theory, the standard equations describing solution equilibria are derived and applied to analyzing biochemical reactions, with a focus on those involved in protein folding and allosteric communication. The semester culminates with exploration of the energetic factors controlling the formation of protein secondary structures and the role of entropy-enthalpy compensation in determining the complex temperature-dependent thermodynamic properties of aqueous solutions. The course emphasizes both qualitative understanding of the thermodynamic forces controlling the evolution and function of living organisms as well as practical application of thermodynamic methods and structural insight in laboratory research. Tutorials cover the use of curve-fitting techniques to analyze biochemical equilibria as well as the use of molecular visualization software to understand protein structure and function. This is a half semester, 2-point course.

BIOT GU4160 Biotechnology Law. 3 points.
Priority given to Biotechnology Program students.
Prerequisites: at least 4 college-level biology or biotechnology courses. This course will introduce students to the interrelated fields of patent law, regulatory law, and contract law that are vital to the biotech and biopharmaceutical sectors. The course will present core concepts in a way that permits students to use them throughout their corporate, academic, and government careers. SCE and TC students may register for this course, but they must first obtain the written permission of the instructor, by filling out a paper Registration Adjustment Form (Add/Drop form). The form can be downloaded at the URL below, but must be signed by the instructor and returned to the office of the registrar. http://registrar.columbia.edu/sites/default/files/content/reg-adjustment.pdf

BIOT GU4161 Ethics in Biopharmaceutical Patent and Regulatory Law. 3 points.
Prerequisites: BIOT GU4160 BIOTECHNOLOGY LAW (BIOT W4160)
Course Objective This course – the first of its kind at Columbia – introduces students to a vital subfield of ethics focusing on patent and regulatory law in the biotech and pharmaceutical sectors. The course combines lectures, structured debate and research to best present this fascinating and nuanced subject. Successful completion of Biotechnology Law (W4160) is a course prerequisite, since properly exploring this branch of bioethics requires an in-depth understanding of biotech and pharmaceutical patent and regulatory law.
BIOT GU4180 Entrepreneurship in Biotechnology. 3 points.

Enrollment limited to 12. Priority given to students in the Masters in Biotechnology Program.

Prerequisites: the instructor’s permission.

The course examines the entrepreneurial process in biotechnology from idea generation through economic viability. Biotechnology companies are unique in that they need a years-to-decades long period of incubation prior to becoming self-sustaining. Students will be introduced to the steps needed to start and nurture a company, and gain an ability to assess the health of potential collaborators, partners or employers. Topics include an overview of the global biotechnology industry, idea generation, business plan formulation, intellectual property protection, funding, personnel management including board composition, regulatory body interaction, and company exits. Course website: http://biot4180.weebly.com/

BIOT GU4200 Biopharmaceutical Development & Regulation. 3 points.

The program aims to provide current life sciences students with an understanding of what drives the regulatory strategies that surround the development decision making process, and how the regulatory professional may best contribute to the goals of product development and approval. To effect this, we will examine operational, strategic, and commercial aspects of the regulatory approval process for new drug, biologic, and biotechnology products both in the United States and worldwide. The topics are designed to provide a chronological review of the requirements needed to obtain marketing approval. Regulatory strategic, operational, and marketing considerations will be addressed throughout the course. We will examine and analyze the regulatory process as a product candidates are advanced from Research and Development, through pre-clinical and clinical testing, to marketing approval, product launch and the post-marketing phase. The goal of this course is to introduce and familiarize students with the terminology, timelines, and actual steps followed by Regulatory Affairs professionals employed in the pharmaceutical or biotechnology industry. Worked examples will be explored to illustrate complex topics and illustrate interpretation of regulations.

BIOT GU4201 Seminar in Biotechnology Development and Regulation. 3 points.

Prerequisites: BIOT W4200 (OK without prerequisite).

This course will provide a practical definition of the current role of the Regulatory Professional in pharmaceutical development, approval and post-approval actions. This will be illustrated by exploration, and interactive discussion of regulatory history, its evolution, current standards, and associated processes. The course will seek to clarify the role of Regulatory in development and lifecycle opportunities, demonstrating the value Regulatory adds by participation on research, development and commercial teams. The course will utilize weekly case studies and guest lecturers to provide color to current topical events related to the areas.

<table>
<thead>
<tr>
<th>Spring 2020: BIOT GU4180</th>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOT 4180</td>
<td>001/12623</td>
<td>F 9:00am - 11:00am</td>
<td>227 Seeley W. Mudd Building</td>
<td>David Sable</td>
<td>3</td>
<td>35/60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring 2020: BIOT GU4201</th>
<th>Course Number</th>
<th>Section/Call Number</th>
<th>Times/Location</th>
<th>Instructor</th>
<th>Points</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOT 4201</td>
<td>001/11853</td>
<td>Th 4:10pm - 6:00pm</td>
<td>700 Fairchild Life Sciences Bldg</td>
<td>Ron Guido</td>
<td>3</td>
<td>91/70</td>
</tr>
</tbody>
</table>

Of Related Interest

Biomedical Engineering
- **BMEN E4150** The cell as a machine

Chemistry
- **BIOC UN3501** Biochemistry: Structure and Metabolism
- **BIOC UN3512** Molecular Biology

Ecology, Evolution, and Environmental Biology
- **EEEB UN2001** Environmental Biology I: Elements to Organisms
- **EEEB GU4321** Human Nature: DNA, Race & Identity

History and Philosophy of Science
- **HPSC W3201** Philosophy and History of Evolutionary Biology

Physics
- **PHYS W4075** Biology at Physical Extremes

Psychology
- **PSYC UN1010** Mind, Brain and Behavior